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ABSTRACT

We study partially hyperbolic attractors of C? diffeomorphisms on a com-
pact manifold. For a robust (non-empty interior) class of such diffeomor-
phisms, we construct Sinai-Ruelle-Bowen measures, for which we prove
exponential decay of correlations and the central limit theorem, in the
space of Holder continuous functions. The techniques we develop (back-
ward inducing, redundancy elimination algorithm) should be useful in the
study of the stochastic properties of much more general non-uniformly
hyperbolic systems.

1. Introduction

In this work, M will always be a compact manifold and H will be the space of

Holder continuous functions on M. Moreover, pug is a physical or SRB (Sinai~

Ruelle-Bowen) probability measure for f. That is, uo gives the time averages
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of a set B(po) of points z € M with positive Lebesgue measure. This set B(i)

will be called the basin of .
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We say that (f, o) has exponential decay of correlations in H if there
exists 7 < 1 and for each @, ¢ € H there exists K = K(p,1) > 0 so that

|Cu(p,¥)| < KT, foralln > 1.

Our main result, Theorem A below, states that a large class of SRB measures
supported on partially hyperbolic attractors of a diffeomorphism have exponential
decay of correlations in H. We explain this in precise terms in the next subsection.

As a consequence of the proof of Theorem A we also obtain, in Theorem B,
that these systems (f, po) satisfy the central limit theorem in H. That is, for
every p € H
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converges in distribution to a gaussian law N(0,0):
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1.1 STATEMENT OF MAIN RESULTS. We take f: M — M to be a C? diffeomor-
phism on a compact manifold M, admitting a compact invariant subset A C M
such that:

(1) There exists an open neighbourhood M of A such that

oo
closuref(M)C M and A= ﬂ (fM(M)).
n=0
(2} A is partially hyperbolic, meaning there exists a continuous D f-invariant
splitting
TAM = E“® @ E**, dim(E**) > 0,

of the tangent bundle restricted to A with the following properties (we fix
a Riemannian metric in M, once and for all):
(a) E"* is uniformly expanding:

[Df " Efnyll < CA",  for every n > 1and z € A;
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(b) E° is domunated by E**:
IDfES| - IDf "Bl < CA", forn > 1 and z € A,

where C' > 0 and 0 < A < 1 are independent of z and n.

These conditions imply (cf. [3], [7]) that there exists a unique foliation (or
lamination) F** of A which is tangent to the strong-unstable bundle E*¥, at
every £ € A. Its leaves are C? submanifolds immersed in M and the attractor A
consists of entire leaves. On the other hand, we also suppose that:

(3) There exists an invariant center-stable foliation F°* of a neighbourhood of

A, tangent to the central bundle E® at every point of A.

We reduce the neighborhood M if necessary, so that it is contained in the
domain of F°*. Our next assumption is

(4) fla admits a Markov partition R = {Rg,Ry,...,Rn}, N > 1, with a

property of topological mixing: given ¢,j € {0,1,..., N}, there exists ng >
1 such that
fMR)NR, #0 for every n > nq.

Here, Markov partition is defined in the same way as for hyperbolic systems
(see [12, Chapter 10]), with F°* in the role of stable foliation. See section 2.1 for
details. We want to stress that in our setting the iterates of a Markov partition
R need not have diameters going to zero. In other words, the set of points z € A
with a given itinerary with respect to R is not necessarily reduced to a single
point.

We are going to distinguish two types of rectangles in R, according to the
behaviour of the center-stable direction E°®. Let A; < 1 be fixed. We call
R; € R a good rectangle if E°® is uniformly contracting,

IDFIEZ| < As <1,

at every point x € R;. All the other elements of R are called bad rectangles.
On a bad rectangle D f may exhibit expansion along the center-stable directions,
but it should be weak:

(5) There exists some good rectangle and, for some sufficiently small 6o > 0,
we have

IDfIES’]l < 1+4dp for any point z in a bad rectangle.

We shall see, in Proposition 2.12, that if dp is taken small enough then the
center-stable bundle is mostly contracting in the sense of [2]: all the Lyapounov
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exponents along E°® are negative. Our precise conditions on dyp are stated in
Proposition 2.12, and equations (3) and (4). It depends only on A4, the com-
binatorics of the Markov partition R, and distortion bounds for the unstable
direction.

It follows from [2] (see also other references below) that f admits some SRB
measure po supported in A, and one can check that pg is unique. Actually, our
methods allow us to give a new proof of these facts. Above all, we prove that
(f, o) has exponential decay of correlations:

THEOREM A: Under assumptions (1)-(5), the diffeomorphism f has a unique
SRB measure ug supported on A. Moreover, such SRB measure exhibits expo-
nential decay of correlations in the space H of Hélder continunous functions.

Moreover,

THEOREM B: The system (f, yig) satisfies the central limit theorem in the space
H of Holder continuous functions.

Let us mention that similar results were obtained recently by Dolgopyat [6],
independently and through a very different approach, for another class of partially
hyperbolic attractors with mostly contracting central direction.

1.2 ExamPLES. (1) Carvalho [4] proved existence and uniqueness of SRB mea-
sures for certain partially hyperbolic attractors (in dimension > 3) obtained by
modifying an Anosov diffeomorphism by isotopy (along the stable direction) in
a neighbourhood of some periodic saddle point p, in such a way that this pe-
riodic point goes through a Hopf (respectively, saddle-node or period-doubling)
bifurcation. The diffeomorphisms one gets in this way have a non-hyperbolic
attractor satisfying conditions (1), (2), (3) of the previous subsection. With a
slightly more detailed construction than was needed in [4], it is possible to ensure
that these diffeomorphisms also satisfy condition (4). For this, one should fix a
Markov partition R of the original Anosov diffeomorphism, and a periodic saddle
in the interior of some Markov rectangle, and then take the isotopy with support
contained in that rectangle. In this way, R will also be a Markov partition for
f, although its refinements \/[__, f*(R) will not have diameter going to zero.
Finally, if the isotopy is carried just a little beyond the Hopf bifurcation, then
the diffeomorphism satisfies condition (5) too.

This procedure extends to much more general modifications of the original
Anosov diffeomorphism, other than Hopf bifurcations. The main requirement
is that the perturbation should preserve partial hyperbolicity with existence of
central-stable foliation F¢¢. We can even perturb the initial system inside several
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Markov rectangles, as long as hyperbolicity is kept in at least one of them (at
least one good rectangle). In fact, this approach provides open classes of systems
to which our theorems apply, as we prove in Proposition 1.1 and Corollary 1.2
below.

(2) Let us begin with an Anosov CZ2-diffeomorphism fo: T3 — T2 on the
3-dimensional torus, with one expanding and two contracting directions. We
suppose that the norm of D f; along the stable subbundle and the norm of D fy !
along the unstable bundle are bounded by a constant Ay < 1/3. Let p be a
fixed point of fy and R, a Markov rectangle (of some Markov Partition of fo)
containing p in its interior. Let § > 0 be a small constant, such that the distance
d(p,0R,) > 34. Denote Vy = B(p,6/2). Then, in the same manner as in [2],
we deform f;'! inside V by an isotopy obtaining a continuous family of maps
fu,0 < v <2 in such a way that

(i) The continuation py, of the fixed point p goes through a Hopf bifurcation,
and becomes a repeller for values of v between 1 and 2 (staying all the time
inside Vp). For v = 1 we have the first moment of the Hopf bifurcation,
with fi conjugated to fo. We suppose that the derivative D fi|ges does not
expand vectors. Finally, we suppose that D fi|ges(pys,) exhibits complex
eigenvalues.

(ii) In the process, there always exist a strong-unstable cone field C** (cf. [13]
for definitions) and a center-stable cone field C°*, defined everywhere, such
that C°® contains the stable direction of the initial map fg.

(iii) Moreover, the width of the cone fields C** and C** are bounded by a small
constant o > 0.

(iv) There exist a constant ¢ > 1 and a neighbourhood V3 C Vo N W*(p), such
that J¢ = ||det Df; | ges|| > o outside V;.

(v) The map f; ! is § — C° close to fy ' outside Vp so that ||(Df; ! |ges) "t <
Ao < 1/3 outside Vp.

Note that the properties stated in conditions (i) through (v), which are valid
for f,,0 < v < 2, are also valid for a whole C'-neighbourhood U of the set of
diffeomorphisms {f,,0 < v < 2}. In particular, by [7] conditions (i) through (iii)
imply that any f € U has an invariant central foliation, since the central cone

field enables us to define a graph transform associated to it, with domain in the
space of foliations tangent to C°°, which is not empty, since the stable foliation
of fo is tangent to it. On the other hand, all f € U also exhibit an unstable
foliation varying continuously with the diffeomorphism.

As a consequence of lemma 6.1 of [2] there is a Cl-neighbourhood U; C U of
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the set {f,,1 < v < 2} such that for all f € Uy, A = T~ W*(py) is a partially
hyperbolic attractor, which is not hyperbolic, because it is transitive and contains
a (normally hyperbolic) invariant circle. A transitive set containing an invariant
circle cannot be hyperbolic, since it has points with different indexes.

Now take f in some small ball B = B(f1,4'),6’ < §/2. Suppose also that
¢’ is sufficiently small such that every diffeomorphism in the ball B(fy,d’) is an
Anosov conjugated to fo and every diffeomorphism in B(fy,8') C U is partially
hyperbolic. We have:

ProPosITION 1.1: If§' > 0 is small, B(f1,8') is an open set of diffeomorphisms
of T? satisfying conditions (1)—(5).

Proof: Suppose that f; is a (non-hyperbolic) diffeomorphism like above. Since
B(f1,68') C U, all that is left to verify is that f € B(fi,d’) satisfies (4)—(5), if &’
is sufficiently small.

Now, given f € B(f1,0’) let us prove that there is an Anosov g, conjugated
and close to fy such that f = g in T3\ V4. Let us consider the lifts of f, fo, g
to the covering space R3 of T3. We denote the lifts by the same letters of their
corresponding maps in the torus. Then, we can write

f=fi+h, wherelh] <§.

If we define ¢ = fo + h, by our choice of §', g is an Anosov. Moreover, since
fi = foin T3V, we have g = fo + h = f in T*~V;,. Since the Markov
partition changes continuously with the point, as long as we have taken 4’ small,
¢ has a Markov partition such that 73 ~ V; does not intersect the boundary of
any rectangle of it. So, the Markov partition of g is a Markov partition for f.
Furthermore, there exists a rectangle R, corresponding to the R, (of fo) in which
f = g. This means that f has at least one good rectangle. Finally, taking ¢’
small, we guarantee that the eventual expansion in the central direction is not so
big. So, f satisfies (1)-(5). 1

Note that the ball B(f1,d’) is not an open subset of non-hyperbolic diffeomor-

phisms. However, we also obtain:

COROLLARY 1.2: There exists an open set of non-hyperbolic diffeomorphisms
f: T3 — T3 satisfying (1) through (5).

Proof: Just take the open set of diffeomorphisms Us = Uy N B(f1,4'), ¢’ as in
the proposition above. Conditions (1)-(5) fit for every diffeomorphism in a ball

B(fla‘s/)'
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A transitive attractor containing a circle cannot be hyperbolic, since it must
contain points of different stable indexes. So, U; is an open set of non-hyperbolic
diffeomorphisms satisfying (1)—(5). |

(3) This procedure generalizes to general non-trivial hyperbolic attractors (in
the place of Anosov diffeomorphisms), e.g., Smale’s solenoid; see {12, chapter 4].
Let R = {Ry,..., Ry} be a Markov partition for fq restricted to the hyperbolic
attractor Ag. By modifying fo near one of the rectangles Ry so as to turn
the contracting (stable) direction possibly slightly expanding, while keeping fq
unchanged in Ag ™ Ry, we can obtain a partially hyperbolic attractor satisfying
conditions (1) through (5).

(4) Recently, Bonatti-Viana (2] extended the results of [4] to general partially
hyperbolic attractors with mostly contracting central direction: there always
exist SRB measures supported in the attractor, and they are finitely many. The
last section of their paper also contains several robust examples, not necessarily
close to hyperbolic systems, to which our Theorems A and B apply.

1.3 STRUCTURE OF THE PROOF. Let us talk about the ideas in the proof of
our results.

To deal with the non-hyperbolic behaviour of our maps (the fact that the bun-
dle E<® may fail to be contracting), we begin by constructing a new dynamical
system F' induced from the original f. That is, F is given locally by an (vari-
able) iterate of f. This is now a standard tool in ergodic theory. However, our
method is novel in that inducing (in fact, a tower construction) is carried out
backwards. This is related to the fact that it is along the center-stable direction
that hyperbolicity breaks down. More precisely, given a point x € A, we analyse
the negative orbit f~"(x) until finding some n(z) > 1 so that f7 is (uniformly)
hyperbolic at f~™®)(g), for every 1 < j < n(z). Then we construct a tower
space

T={(f"(x),—1): 0 < i <n(z)}

and we lift f~! to a map G on T: projoG = f~! o proj, where proj: 7 — A
is the canonical projection proj(z,—:) = z. A key point is that G is uniformly
hyperbolic with respect to some metric in the tower 7. The strategy is to deduce
properties of f from properties of G by means of the projection proj.

However, proceeding from this, we are faced with a serious problem: since the
map (G is not injective, in general, f cannot be lifted to a map on the tower
(although it lifts to a multivalued relation). In order to completely bypass this
difficulty, we introduced a redundancy elimination algorithm. We construct 7
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as a union of local center-stable leaves (intersected with the attractor). In brief
terms, the algorithm picks exactly one (convenient) copy of each center-stable
leaf in the tower, and removes all the others. The “trimmed” tower obtained
after the algorithm is applied is isomorphic to a full measure subset of A, and f
lifts to a map G~! in it, which is an embedding.

The negative iterates of the remaining center-stable leaves which are contained
in the 0-th floor of the trimmed tower exhausts (using f~! iterates) A, up to a
zero measure (for the conditional Lebesgue measure of any unstable leaf) subset
of A. The advantage of this algorithm is that we decompose almost every orbit
into minimal possible segments so that the left endpoint is a hyperbolic time (cf.
Definition 2.4) for the right endpoint. Both endpoints are in the 0-th floor (that
is, the subset of points (y,0) € T) of the tower. Moreover, the first return map
(obtained using positive iterates of f) of this floor has Markovian properties.

Sometimes we identify sets in the tower with their isomorphic images (under

proj) in A. The 0-th floor of the trimmed tower and its isomorphic image are
both denoted by A.

Due to the way we construct our tower, this set A is hyperbolic in a strong
sense: there is ¢ < 1 such that, given any positive iterate ¢, and x € A, we have
|IDf*|E°*(z)|| < s'. Once we reach this point, the main results of our work can
be derived along fairly well-known lines, from the properties of set A.

In the third section of our paper, we study the return map F (or root map)
of A, centering our attention on examples such that the Markov rectangles are
extensible to the ambient (this is the case of examples (1), (2) and (3) above).
In such cases, the SRB measure can be obtained as an exponentially fast limit of
iterates of Lebesgue measure in the ambient space M restricted to the positive
Lebesgue measure subset A.

For that purpose, we adapt techniques in [8], to construct a measure (p4)
invariant for this return map. Indeed, p4 is, up to a normalization factor, the
SRB measure ug of f restricted to A. We construct the SRB measure g for f,
just pushing p4 forward to the whole A.

In section 4, we show a more abstract way (independent from that in section
3) to construct the SRB measure and prove that it is Kolmogorov. Finally, we
deduce that (f, uo) has exponential decay of correlations in the space of Holder
continuous functions and satisfies the central limit theorem.

Besides the results we prove here, we expect these methods of backward induc-
ing and redundancy elimination algorithm to be useful in much more generality,
especially to study systems whose prospective stable direction fails to be con-
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tracting.

2. Construction of the set A

2.1 SOME NOTATIONS AND DEFINITIONS. We begin by making precise what
we mean by Markov partition of a diffeomorphism f on a partially hyperbolic
attractor A. The standing assumption is that f has a center-stable foliation F°*
defined on a neighbourhood M of A, besides the strong-unstable foliation.

Definition 2.1 (Proper rectangle): A proper rectangle R of A is a closed subset
of it such that:

1. R is the closure of its interior (in the relative topology of A).

2. Given z,y € R, there is exactly one point 2 = [z,y] in R which is the
intersection of the local center-stable manifold through z and the local
unstable manifold through y. Moreover, the bracket map [, .] is continuous
in R.

Definition 2.2 (Markov partition): A collection R = {Rg,Ry,...,By}, N > 1
of proper rectangles is a Markov partition for f if:

1. Uio R, = A and the interiors of the R,’s are two-by-two disjoint.

2. If the intersection I' N A of a local unstable manifold with the set A is
contained in a rectangle R,, and f~}T)NR; # 0, for some j € {0,...,N},
then f~}(I') C R,. A similar property is satisfied by any local central
manifold v such that v N A is contained in R,: if f(yNA)N R, # 0,
j€{0,...,N}, then f(y) C R;.

Above, by local unstable manifold and local center-stable manifold we just
mean small neighbourhoods of the point inside the corresponding unstable and
center-stable leaves. From now on, these expressions will have a slightly more
precise meaning: unless we say otherwise, we will use local unstable mani-
fold or just unstable manifold to mean the intersection of the local unstable
manifold of a point z € A with the rectangle of the Markov partition that con-
tains A. A similar convention will apply to the expression local center-stable
manifold (or local central manifold). In other words, the expression local
center-stable manifold will designate points in A with the same future (n > 0)
itinerary with respect to the Markov partition R of A. Analogously, we will use
local unstable manifold for points with the same past (n < 0) itinerary with
respect to R.

Local central manifolds will be represented by the (lower case) greek letter ~.

If f*(y) C 9/, for some i € N, we say 4 is an ancestor (for f~1) of .
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Sometimes we are going to deal with functions which are constant in local
central manifolds. If & is a such function we will denote by h(v) its value in 5.
For each rectangle R; of the Markov partition R, we will call

ki = K(R,) = sup (| DFIE(@)]))-
TER,

R(z) will be the rectangle of the partition that contains z, and if z € R;, we set
k(T) = K,.

Given n € N, we will call an n-cylinder a set C of points such that each f*(C)
is entirely contained in a rectangle, for ¢ = 0,...,n. When n is assumed, we drop
it, and we just write cylinder instead of n-cylinder.

Fixed a rectangle R (and n € N); we will refer to the set of cylinders C such
that f*(C) C R as the cylinders finishing at R.

We will use the term unstable leaf to mean any restriction of a local unstable
manifold, or any countable union of local unstable manifolds. We will use the
term central leaf to mean any finite union of local central manifolds.

As we have seen in the introduction of this work, we are going to construct a
kind of tower structure from the original map f. Let us say what we mean by
tower in this work.

Definition 2.3 (Tower space): A tower space 7 or simply a tower 7 is a
countable disjoint union | J;(S;,!) of copies of sets S; in A, where each §; is a
union of local central manifolds, and ! is a non-positive integer. Fix a non-
positive integer I’; the set (Sy,l’) is called the I’-th floor of 7. The 0-th floor
is also called ground floor.

2.2 BACKWARD INDUCING. Now we can begin the construction of our tower.
This will be done by means of backward inducing, as explained in the intro-
duction.

In the 0-th floor of the tower, we include a copy
(7,0) of each v € F£5. So, the 0-th floor is, in fact, a copy of A. In the se-

quel, we will often identify v and (v,0). We associate to each (v,0) the constant
function wy((7y,0)) = 1. Now, suppose the I-th floor is constructed, and that
we have associated to it a function w;((7,1)), constant in each central leaf in it.
Given (v,1), denote v;,7 = 1,...,r the local central manifolds that participate in
the pre-image of v by f (that is, these are the local central leaves whose image
under f is contained in 7). Let ¢ > A; be any constant less than one. For each
~; we calculate the expression

Ei = wi((7,)) &(%) s
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If E; is less than or equal to 1, we do nothing; otherwise, we include a copy
(7,1 — 1) of 7; in the (I — 1)-st floor. In other words, the set S;_; (see tower def-
inition, in the last subsection) is precisely the union of all local central manifolds
v, for which E; > 1. For those v, we define

w[_l(’}’,',l - 1) = Ez.

This procedure defines our tower space.
In a natural manner, we lift f~! to a tower map G on the tower, that is, G is
such that

proj(G(z,1)) = f~}(proj(z, 1))

where proj(z,!) = .
In fact, G is defined as

_ @)= 1), itz k() T > 0,
G(x’l)—{(f‘l(i),O), ot;}érfvise. s

However, the inverse G! is not well defined as a function, because G is not

injective.
;————%— -

==
=
et

Backward Inducing. .

In the next definition, we adapt to our context a notion introduced in [1]:

Definition 2.4 (Hyperbolic time): Given z € A, —p is a hyperbolic time for z
if there exists p € N such that f~P(z) =y and, fori =1,...,p,

-1 -1

(1) 1] swp IDAES) = ] s(F @) <1

=0 TER(F (1) poir

Ua)
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holds. This means Df¢|E°(y) iscontracting for i = 1,...,p by a factor of
contraction at least of ¢*.

We say —p is the first hyperbolic time for z, if none of —p+1,...,-1is
hyperbolic time for z.

Sometimes, by a slight abuse of language, we say ¥y = f%(2) is the first
hyperbolic time for z to denote that —p is the first hyperbolic time for 2.

Remark 2.5: Note that replacing y by any ¥’ € y(y) does not affect the value
of (1). Hence y’ is (first) hyperbolic time for f?(y’), if and only if y is (first)
hyperbolic time for z = fP(y).

Definition 2.6 (A sequence of v): We say that {(°,0), (y"1, ~1),..., (Y%, —k),
(y~%=1,0)} forms a sequence of (v,0) = (7°,0) if (y~%, —1) C G(y~*, —i+1),
fori=1,...,kand (y"*-1,0) C G(v~*, -k).

Definition 2.7 (The tree of v): The tree of v, denoted by T'(y), is the union of
all sequences of . In this case, we will call ¥ ~ (v,0) the root of the tree. Each
element (v*,k),k # 0 of the tree will be called a branch of the tree. The last
term of each sequence of v will be called a flower of the tree. Sometimes, we will
refer to a (%,7) in T'(y) as a leaf of T'(vy), where (4,¢) can be a branch, a flower
or the root.

Remark 2.8: It is a trivial but important remark that if 4/, 4" belongs to the
same rectangle of the Markov partition, then their trees are combinatorially iso-
morphic (their trees have the same combinatorial feature).

We are able to prove the following important result:

PROPOSITION 2.9: The flowers of the tree of (v, 0) are the first hyperbolic time
for (7y,0). That is, if {(¥°,0), (v~1, =1),..., (¥, k), (v¥*~1,0)} is a sequence of the
tree of , then the points of Y1 are the first hyperbolic time for their respective
images in f~k+1(y%=1) C 4.

Proof: Consider the sequence of v expressed above. By the construction of our
tower, we know that

-1

¢ TT R (h) = w2 ) > 1.
7=0
This means that the points of 4! are not hyperbolic times for their respective
f~timages in v, for k — 1 < I < 0. So, we conclude that going backwards up to
! = k we do not have hyperbolic time.
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Therefore, the only thing left to prove is that we have hyperbolic time (which
then will be the first) for I = k - 1.
We know that if k -1 < r < -1,

—k —-r—1
1> k. H n(fj(,yk—l)) = H s(F (Y1) - we (47, 7).
3=0 §=0

Since w,((y",r)} > 1, and the product above is < 1, the factor
" ]—[]_:r;1 &(f7(v*~1)) has to be < 1. So, we have

1—1
RPN <1, Wyerk T 1<i<—k+1 N
§=0

Our next step is proving that, given any local unstable manifold T, supplied
with its respective Lebesgue measure m,, the measure m,, of (the projection of)
the n-th floor of the tower, intersected with I', decreases exponentially fast with
n.

For this purpose, we will need the following result of V. Pliss, which assures
that the hyperbolic times are quite common. See, e.g., [9] for a proof.

LEMMA 2.10 (Pliss lemma): Given A > 0, ¢ > 0, H > 0, 3Ny = No(\, ¢, H),
0 = 6(A\, ¢, H) > 0 such that, if ay,...,an, are real numbers, Ny > Ny with

Ny

Zan <N;-A and lap|<H, forn=1,..., Ny,

n=1
then there are 1 < n, < ... < n; < N; such that

n

Z a, <(n—ny)(A+e), Vi=1,...,t0 and n; <n< Ny

i=n,+1
Furthermore, t, satisfies £1/N1 > 6.

Let us explain the way we will use the Pliss lemma. If we fix any ¢’ such
that A\; < ¢’ < ¢, then there exists N, (depending on ¢, ¢’ and on bounds for
|Df|E*||) such that for any point z satisfying

IDF™ B ()] < ()™, Ny > No

we will have at least ¢; hyperbolic times between z and f¥1(2), t; being a fixed
fraction of N;.
We will also need the following lemma:
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LEMMA 2.11 (Bounded distortion in unstable directions): Given L; > 0, there
exists K > 0 such that, given any C? disk T with tangent bundle inside an
unstable cone field and with small curvature, and given any n > 1 such that
diam(f™(T')) < L1, we have

1 ldethan p(:l?)l ~
K~ ldethanyF(y)l

for every x, y € I
Proof:  Let us write J2(2) = |det D f" . Due to lemma 3.1 of [2], the positive

iterates f*(I') have bounded curvature, which implies that J. ) is ¢/-Lipschitz
continuous for some uniform constant ¢’ > 0. On the other hand, f is uniformly

expanding along any direction contained in the unstable cone field, so we have

d(f* (), f'(y) < \T(f(@), @) S AT Ly, i=0,.. . n

Therefore, we obtain

n—1

J .
llOg Je(z) l Z“Ongz(r) (z)) = log J gy (f*(w))I
=0
-1

<N d(f (@), ) < Zc (X3~’La).

=0 =0

Hence, just take K = exp(c’ - Ly - Sl aAL). |

PROPOSITION 2.12: Given any local unstable manifold I', the intersection of the
n-th floor S, of the tower with I' has exponentially small m,, measure, as long
as we fix & in condition (5) (see introduction) sufficiently close to zero. That s,
as long as we fix constant g sufficiently close to zero, there are constants ¢ > (
and 0 < u < 1 which do not depend on T', such that

my (SN <c-u™, VYneN
In particular, we have ¥, ;m,(I'NS,,) < +oo.

Proof: Let us call v the borelian measure on A given by v(B) = m,(I' N B),
where B is any borelian set.

Let Cy,...,Cy be all the n-cylinders. Given ¢’ such that A\, < ¢/ < ¢ we
define a good cylinder as one which satisfies

@ @ TIRPC) <L g€l o)
§=0
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If a cylinder is not good, we say it is bad.

Notice that there exists Ny € N such that the (—n)-th floor of the tower is
contained in the union of the bad cylinders, if n > Ny. This happens because of
the Pliss lemma. If v is in a good cylinder, by the Pliss lemma, an ancestor of
it has already become a hyperbolic time (with ) for f*(v), therefore it returned
to the zero level of the tower.

Of course the sum Zfi’o of the v-measure of the floors from the ground floor
to the —Np-th floor (Ng € N fixed in the paragraph above) is finite. So, the only
thing we have to do is to prove that the v-measure of the union of bad n-cylinders
is exponentially small with n, n > Nj.

Let us consider C(ty,...,8:),0 <ty < --- < t, <n the union of all n-cylinders
C whose images f*, i € {1,...,7} are contained in bad rectangles. We have:

CrLAmM: The v-measure of C(ti,...,t,) is bounded by const -u}, for some
O0<uy <1.

Let us prove by recurrence the above claim. Since C(ty,...,t,) is contained
in C(t1,...,tr—1), all we have to do is to verify that m(C(¢1,...,¢)) < ug -
m(C(t1,...,tr—1)), for some constant 0 < uz < 1. Since the Markov partition
R is topologically mixing (and the fact that, if some positive iterate of f is
exponentially mixing, so also is f) there is no loss of generality in supposing that
the first positive iterate of each rectangle in R crosses some good rectangle in R.
Then, any disk with bounded curvature and with its tangent bundle inside the
unstable cone field, crossing some rectangle, will have at most a uniform fraction
0 < up < 1 of (the conditional volume of) its image crossing bad rectangles.

On the other hand, C(t1,...,t,_1) consists in a union of ¢, — 1 cylinders. Let
T'; be the intersection of I' with one of these f, — 1 cylinders, say C. We will
show that the fraction of I'y occupied by C(t1,...,t,) is uniformly less than 1.
In fact, for T’y as above, we have (m,, is the conditional volume of disks whose
tangent bundle is inside the unstable cone field)

my(ff(C1) N 17 (Cltr, - -5 8r))) < o - mu (£ (T1)).
By the bounded distortion lemma above, we obtain
mu(I‘l N C(tl, cean tr)) _<_ Uy mu(l"l)

Finally, integrating over all small subsets 'y of T, crossing t,. — 1 cylinders of
C(t1,...,tr_1) we obtain

V(C(tl, .. .,tr)) <ug: I/(C(tl, .. .,t,._l)), with 0 < ug < 1,
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which finishes the proof of the claim.

Now, we are able to prove that the v-measure of the union of the bad
n-cylinders goes exponentially fast to 0 as n goes to infinity.

We just group the n-cylinders into sets C(t1,...,t,),t, < n, as above. The bad
sets, which group the bad cylinders, consist of points that visit the bad rectangles
for a number of times greater than or equal to r > «g - n, where o is a fixed
fraction of n such that

(3) ¢ < (1+68p)% - Al < 1.

Each of them has exponentially small Lebesgue measure (bounded by const -u}),
and the number of them is bounded by

()

By Stirling’s formula, we know that

ny _ n! e n"
r)  (n—r)lr! (n—r)tn=r).pr’

for some universal constant A. Then, we have

IA

= (O () =[50+

Since r > «q - n, if we take g near 1, the term in brackets above can be made
(uniformly) as close to 1 as we want.
This implies that the v-measure of the bad cylinders is bounded by

n
(4) const - Z <T>u£ < const - ug®™,

r>ag-n

for some uy < ug < 1 as long as we take g close to 1. (The term const does
not represent necessarily the same positive constant in both sides above.) |

COROLLARY 2.13: Let B = {~, there is an infinite number of subscripts i such
that (v, %) is in the tower}. Then for any (global) unstable leafT', m,,(BNT") = 0.

Proof: Indeed, this is a consequence of the Borel-Cantelli Lemma. Given any
negative integer n, B C UJ_:: S;, where (S,,j) is the j-th floor of our tower.
Given any local unstable leaf I'y C I', we have from the proof above that such
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a union has exponentially small v-measure (here, v is the restriction of m,, with
T'1). As long as we let n - —o0, we obtain ¥(B) = 0. Since this is valid for any
I'y C T, this implies that m,(B) = 0. n

Remark 2.14: We note that, if a local stable leaf v is contained in B, v' > f?(v)
also is in B, for j € N. So we have

p=J F(B) = F(B).

Jj€E-N JjE€Z

Such a set D is f and an f~!-invariant set, which is the union of local central
manifolds and still has zero (conditional) Lebesgue measure, since f is a C-
diffeomorphism.

For the sequel of our arguments, we must discard the set D. Therefore, we will
consider the tower built for A ~D.

The trees constructed for such a set have an interesting property:

PROPOSITION 2.15: Let <y be a central manifold in A~D. If (v,i) € T(v'), then
there is no other copy (v, j) of y m T'(¥'), j # 1.

Proof: First, suppose both 7 and j to be non-zero numbers. There's no loss of
generality if we suppose j < ¢. Then, we will have a copy (7,7 —1) of ¥/ in T(v').
In this case, we will have (v',n- (j —4)) in T(y'), Vn € N. Then, v’ € D.

Now suppose ¢ = 0, j < 0. If f(y) C +/, then j < -1, and again we have
copy (v,i), i < 0 of 9/, and 4/ € D. Otherwise, f(y) C 4!, which implies
(v',1) € T(v'), with I < 0 and [ # j — 1. Then we have two different copies with
non-zero subscripts of v'. And we are again in the first case treated above. n

2.3 REDUNDANCY ELIMINATION ALGORITHM. As we have seen, f does not lift
to a map on the tower. In this subsection we describe an algorithm that permits
us to discard all copies but one of each manifold (v,%) in the tower. In fact,
the union of the remaining copies will be isomorphic to A ~ D, a full Lebesgue
measure subset of A. We close this subsection by analysing the action of f on
the reduced tower.

First, we need some definitions.

Definition 2.16 (Tree inclusion): We say the tree of v is contained in the tree
of 4/ if there is a copy (v,7),% # 0 of v in the tree of 4/. In this case, we write
T(y) <T(').

This terminology is justified by the following proposition:
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Tree inclusion and redundance elimination algorithm. Each curved segment represents
a local stable manifold in the tower, and we draw two trees, where the tree of gamma
is contained in the tree of gamma’. Roots and flowers appear as thicker segments.

PROPOSITION 2.17: If T'(y) < T(v’), then for every leaf (¥,1) in T(v) there will
be a copy (¥,7) in T(v'), with ¢ > j (recall that ¢, j are non-positive). If i = j,
then both are zero.

Proof: Suppose i # 0. Let (%,1) € T(v) be as in the statement of the proposition.
If T(y) < T(v'), there exists k # 0 such that (v,k) € T(y'). Then, f~*(3) C v
implies that f~0+%)(3) c 4. Since f~¢+*¥)(3) C +' does not have hyperbolic
time up to k, it cannot have hyperbolic time up to k + ¢, because, if it had one,
such a hyperbolic time would correspond to a hyperbolic time for f7*(%) C (v, 0)
before 7, and f*(+y) does not reach its first hyperbolic time up to 4.

Therefore, if we put § = k + ¢, we will have (¥, j) € T(y'), by the rules of the
tree construction. In this case, we see that ¢ # j.

If i = 0, we can apply our last analysis for (v},1) D f(%,0), (v},1) € T(y),
1 < 0. (We can suppose ! < 0, because, if | =0, 4" = 4, and the result is trivial.)

So, either (¥,0) belongs to T'(7') (so j =i = 0) or (¥,l — 1) belongs to T'(v')
(in this case, j =1 —1#0). |

Now, we can explain our method of redundancy elimination. Given a tree T'(y)
it can be contained in, at most, a finite number of other trees. This is because
we discard the invariant set D, which contains leaves with an infinite number of
copies in the initial tower. So, every local central manifold in the tower has just
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a finite number of copies. If T'(y) was contained in an infinite number of other
trees, v would have an infinite number of copies, so it would belong to D and so
would also do the manifolds whose copies lie in its tree.

Then, given v, v’ such that T'(y) < T(v'), we just erase T'(y) from the tower,
except the flowers that are common to both trees. In other words, we stay
only with T(y"). We will not lose any information by proceeding so, because,
as we have seen in the last proposition, there is a copy of T(v) in T'(v'), just
with decreased subscript (recall that the subscripts are negative) in relation to
the original T'(7). Since T'(y) is conteined in just a finite number of trees, this
process finishes in some steps.

Of course, by our algorithm, we always keep at least a copy of each local central
manifold v in the tower, as we just eliminate some copy if we keep at least another
as back-up.

In fact, there will be exactly one copy of each v € A~ D, in the final of the
process, as we show in the next proposition.

Let us call maximal the trees that were not eliminated by our process. The
following result justifies this terminology:

PROPOSITION 2.18: Let T(v') be a maximal tree. If (%,1) is in T(%'), it cannot
have (a different) copy in any other maximal tree.

Proof: Suppose it has a copy (%, j) € T(v), T(y) maximal too, and 7 # j. First,
suppose ¢ < 0. If j < 4, (7,5 —1) would belong to T'(v), so T'(v) < T'(v') = T'(v)
is not maximal. The same is valid if j > 4, j # 0, exchanging the roles played
by v and +'. If i = 0, then j < 0 (in order to have (%,7) # (¥,0)). Therefore,
f77(7) C v has not reached its first hyperbolic time until j. So (%,0) is first
hyperbolic time for f=%(3) C v, k > j. Hence, (v,j — k) C T(v'), and again we
have T'(y) < T(v'), which contradicts T'(7y)’s maximality. (]

Finally, the following proposition assures that our maximal trees glue nicely:

PROPOSITION 2.19: If (v,0) is a flower in a maximal tree T'(v'), it is also the
root of another maximal tree.

Proof: Suppose the contrary. So, there will be a copy (v, %), ¢ # 0 of v in another
tree, for instance, T(y"). If f~7(y) C ¥' (§ < 0), we must have j < %, otherwise
T(y") < T(v"), which cannot occur, since T'(v’) is maximal.

Therefore, (7", j — ) belongs to T'(v'), hence T(v") < T'('). By our Proposi-
tion 2.15, each leaf in T'("") has a subscript greater than or equal to the subscript
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of its copy in T'(v') (recall that the subscripts are nonpositive integers). This im-
plies that i > 0, which is a contradiction. 1

Let S ~ A~ D be the set of tower surviving leaves (that rested after we apply
our elimination algorithm) and let 4 be the set

A= {(v,0) € S).

We will keep the identification vy ~ (v, 0).
Now, we can lift f to S (we will use the same symbol f for the lift):

f:8«
_J(f@),l+ 1), ifl<q,
fla ) = { (f(2),9) otherwise,

where j is the only one such that (f(z),;) € S.

Except for the fact that we have discarded D, we are back to a diffeomorphism
on A. (Indeed, in the next sections we will always write A, instead of S.) However,
the trimmed tower structure permits us to decompose almost every orbit into
minimal segments, whose endpoints are the return times to the 0-th floor A.
We are led to consider the root map induced by f, defining F: A «+ as the
first return map of A. This is the same map that takes flowers in & in their
corresponding roots (root map).

The map F is a bijection (onto its image) since it is a first return map of an
invertible map. Since the flowers correspond to the first hyperbolic time for their
respective roots, if we take any x € v, ¥ C A, then we have ||Df*|E**(z)|| < <",
for all n > 0. This implies not only the fact that F restricted to any local stable
leaf is a (uniform) contraction, but also that F' has good hyperbolic properties
(e.g., bounded distortion statements), as we will show in the next section.

Another important property of F is that we can decompose A into sets
Ay, ..., Ai, ..., where each A; is a union of local central manifolds, such that

Fla, = f7|a,.

By our construction, each image F(A;) crosses A in a Markovian way. This
means that, if F(A;) intersects the interior of a local unstable leaf, it contains
the intersection of such a local leaf with A.

Remark 2.20: Note that any = € A (remaining from the elimination algorithm)
corresponds to one unique point (z,—:¢),¢ > 0 in the tower. So f*(z) belongs
to \A. This implies that  has only negative Liapounov exponents in its central
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space. By [2, Th. A] (see also [10], [11]), f has some SRB measure pg. In the
last section, we prove that it is Kolmogorov and the theorems we stated in the
introduction of this paper.

3. An invariant measure for the root map

In this section we center our attention on systems as in the introduction admitting
a Markov partition that extends to the ambient. This means that the Markov
rectangles can be written as intersections of the attractor with open subsets of
the ambient that also satisfy a Markov property. More precisely, we suppose
that such open sets can be found admitting two transverse foliations: the center-
stable foliation and an extension of the unstable foliation and these foliations
map in a Markov fashion. In some cases, for instance, in systems derived from
solenoid, we can use a not necessarily invariant foliation in place of an extension
of the unstable foliation of the attractor, as long as such foliation satisfies three
conditions that are stated in (pl), (p2) and (p3) below.

Under such hypotheses, we construct an F-invariant measure j 4, which we
will use, as well as some of its properties we prove here, to construct (in the last
subsection of this section) the SRB-measure for the original diffeomorphism f.
We use the methods of C. Liverani [8], in the dissipative version given in [13,
section 4]. For the reader’s convenience, we rewrite some of the propositions in
these works, instead of just pointing out the necessary modifications.

Although we do not use it here, let us mention that u4 is, indeed, an SRB-
measure for F. Moreover, (F, p14,.A) has exponential decay of correlations and
satisfies the central limit theorem. Proofs of these facts can be found in [5].

For proving these results, there is no loss of generality in supposing that the
extended Markov partition exhausts M. We also remark that the tower con-
struction that we did in the last section for A can be easily adapted for points of
M. We just have to see the stable manifolds as submanifolds of M (as in their
classical meaning), not intersected with A.

3.1 TRANSFER OPERATOR. It is no restriction to suppose that the diameter of

M ig at most 1, and we do so in all that follows. Let m be the Lebesgue measure

on M. In this section and in the next, we will consider m normalized in such

way that m(A4) = 1. Clearly, it is also no restriction to suppose that there is a

unique good rectangle (just consider the other ones to be bad, replacing in the

last section the value of the function x on each of them by its greatest value).
We introduce linear operators

Ug)(z) = ¢(F(x))
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and
(L)) = {K(F“(y))l det DF(F~\(y))|"Y, ify € F(A),

otherwise,

where, if F(x) = fi(zx), we have DF(z) = D(f’)(z). Observe that, changing
variables y = F(z),

_ P(F~1(y) -
[wowim=[ gy @)

= / o(x)$(F(z))dm(z) = f o(Uy)dm
A A

We want to analyse the action of I, on observable functions in terms of corre-
sponding averages on local stable leaves. Of course, there is no canonical choice
of probabilities supported on stable leaves. Instead, we average with respect
to a whole class of measures, namely, the cone of Hélder continuous densities
D(v) = D{(a, p, ), defined by

D(v) = {p: ¥ = R such that p(x) > O0Vz € vy and logp is (a, )-Holder},

for each local stable leaf v C A. It is easy to check that D(v) is a convex cone.
Let 6 = 6, denote the corresponding projective metric. We also need a similar
cone

D1(’7) = D(ah M1, 7),

corresponding to better Holder constants @y > 0 and 0 < g1 < 1: we shall take
a>a; > 1and 0 < p < py < 1; cf. Lemma 3.2, (8), (13) below. Finally, we
also consider the projective metric 6, = 8, . associated to the cone of positive
densities

D, (y) = {p: ¥ —= R such that p > 0}.

Given ¢: A — R and p € D(y), we denote by f7 wp the integral of ¢ for the
measure pm.,, where m., is the smooth measure induced on < by the riemannian
metric. We always suppose f7 p = 1, unless otherwise specified. Let ¢: A =+ R
and L¢ be as defined above. Given any stable leaf v, and j € N, let v;,
k =1,...,k, be the stable leaves such that f7(v;x) = F(vjx) C 7. Then, for
any p € D(v),

'(y)
fwon- E/ledetw( IO

- det (DF | v;1)(z)| - |
Z[n ' et Dpf( - PEE) = Jzk/“ s
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where F | vy = f2 | Vi, (DF | 7,,) denotes the restriction of DF to the
tangent space of v, ; and

_ [det(DF [ 734

F).
rde 0F] PP

P,k

In the next lemmas we use the fact that local stable leaves form a continuous
family of C? embedded submanifolds of A4, in particular, they have uniformly
bounded curvature; see [13], Appendix A.

LEMMA 3.1: There exists K > 0 which is a uniform Lipschitz constant for

| det(DF | 7,,)|
jdet DF)

in Y3,k VJ7 k.
Proof: Let 7] , be the leaf containing f*(v,k). Then, we will simply write D f;

instead of Df | 7,,k» Where f is our original diffeomorphism.
Given z, y € 7v; %, we have

|det(DF | vin(2)| _ | |det(DF | %,k(y)l.
[det DF ()] & Jdet DF(y)]

1 8 7 r P
S]Z.logldet(Dfl (Fr@l _, _ |detDf(f (y))w.

’ log

)
[det DfF(fi(x)| ¢ |det DF(fi(y))]

Since the curvature of the stable leaves is bounded, Df? is globally Lipschitz
and the expression above is less than or equal to

j—1 j—1
D OK'A(fr ), @) < K'Y ¢ dwy) <K -d(z,y). N
1=0 1=0

LEMMA 3.2: There are Ay < 1 and 11 < 1 such that, if a is large enough,

(@) p€ DY) = pjk € D(A1a, p,v,) for j >0,

(b) o' 0" € D(V) = 0 k(p) 1 Py 1) < T0(p', p") for j > 0,
where 6 and 6;, are the projective metrics associated to D(7y) and to D(v, k),
respectively.

Proof: Clearly, p > 0= p;x > 0.
Let K > 0 be the Lipschitz constant we found in the last lemma. We suppose

K

o> o
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where ¢ < 1 is the same uniform bound for the contraction of F' on stable leaves
of the first section. Fix A; € (¢#,1) so that a > K/(A; — ¢#). Then

[log pj k() — log p; k(y)| < [log p(F(z)) — log p(F (y))]

|det(DF | 7,)(m)| | |det(DF | 7,4)(®)]
ot 1 DFE 5 TdetDE(y)

< ad(F(z), F()* + K d(z,y) < (a () + K) d(z,9)* < ard(z,y)*.

This proves (a).

Now, in view of proposition 2.3 of [13], to prove (b) it suffices to show that
D(Ma, p1,7,,%) has finite diameter in D(y,x). Let 04 ;% = 64, , denote the
projective metric associated to the cone D, (v; k) of positive densities on 7; 4.
Observe that 8 ;i and 8; are given by the expressions

By ok sup(p2/¢1)
6 j ’ = lO = 10
+,.k(91, p2) = log otk & inf(p2/¢1)
w2(z)p1(y)
~togsup { L4 4y e
& (@)p2(v) 7
and Bix( )
0. , =1lo Pik\$1, $2)
ik (1, 2) = log aj (o1, 02)’
where

_ .o [P2(7) explad(z,y)")e2(2) — 02(y) |
sln pa) =t (e (@) ) Y R

and Sk is given by a similar expression with sup instead of inf.

Given g/, p" € D(Aa, p1,7; k) and 2,y € 7; %, we have

exp(ad(z,y)*) — p"(y)/p"(z)  explad(z,y)*) - exp(hiad(z,y)*) .
exp(ad(z,y)*) — p'(y)/¢'(x) ~ exp(ad(w,y)*) — exp(-Aiad(z,y)*) =

where 71 = inf{(2 — 2*)/(2 — 27™) : z > 1} € (0,1). Therefore,

k(P 0") > Moy k(e 0").

In just the same way, one finds 75 > 1 such that B; x(¢', ") < 74 By, i k(p's 0").
Thus,

0i k(P 0") < 04 560, p") +log(rs/71)

for every p', p" € D(Mia, b, 7j,5)-
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Next we find a uniform upper bound for 8, ;(p', ') with o', p" € D(v,x). We
normalize f,y P=1= fv . p" and then the mean value theorem gives
I Js

1!

p exp(—a (diam~; )*)
—,(117 > .
p exp(a (diamy; k)#)

> exp(—2a).
Recall that we suppose diam(M) < 1. It follows that

og k(0. p") > exp(—2a) and By ; k(0 0") < exp(2a)

and so 65 ;x(p',p") < 4a, for all p',p" € D(vy;x). Altogether, we have shown
that the 6 x-diameter of D(Aya, i1, 7v;x) is bounded by 4a + log(75/71). |

Now let us consider a family of C? diffeomorphisms

T=7(%,7):7 7,

C?-close to the inclusion map of 4 in M, chosen satisfying (p1), (p2) and (p3)
below, which is always possible (see [13, section 3], and references therein), if we
take it near to the (f-invariant) projection along unstable leaves. We observe
that such C? projections are not necessarily f- or F-invariant.

As v;x’s are the connected components of F~'(y) (such that Fl, , = fi], ;)
we put 7, s to be the connected components of F~!(¥) (numbered in such a
way that 7;x is close to <, and both components are in the same rectangle).
We still write 7, x = (%, v,k). Let d(y',y") denote the distance between two
points ', 4" € A belonging to the same unstable leaf I', measured along I'. Then
there are constants ag > 0, vy > 0, A, < 1, depending only on f, such that
(pl) m and log|det Dr| are ag-Lipschitz maps;

(p2) log|det Dn(y)| < agd(y, n(y))*° for every y € 7;
(p3) d(z,myx(2)) < Ay d(F(z), wF(z)) for every z € ¥; -
For any 7, ¥ as before, we define the distance between v and 4 by

d(v,7%) = sup{d(y, 7(y)) : y € 7}.

As a direct consequence of (p3), the map induced by F' in the space of local stable
leaves is expanding for this distance:

() d(7,7) > A7 (ks Tpk),  for every v, 4.
Next, to every p € D;(y) we associate the density p: ¥ — R defined by

(6) p(y) = p(n(y)) - [ det Dr(y)|.
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Clearly, p > 0. Moreover, as a consequence of (pl), log § = log por+log | det Dr|
is (@1, p1)-Holder continuous with @; = ajab’ + ag. Recall that diam(M) < 1.
This also implies that log g is (@, p)-Hélder continuous, for & = ajal™ + ag. We
suppose

(7 a/2 > a=ajaf" + ao,

so that, in particular, p € D1(y) = p € D(¥). (This step is one of the reasons
why we need the auxiliary cone Dy (), the other one is in the proof of Lemma
3.5.) Note also that f7 p = [5p, by change of variables.

3.2 AN INVARIANT CONE FOR THE TRANSFER OPERATOR. Now we introduce
a cone of functions that, as we shall see, is strictly invariant under the transfer
operator L. This fact is at the basis of our construction of 4.
Given b > 0, ¢ > 0, and v € (0,1], we let C(b,c,v) be the cone of bounded
functions ¢: A — R satisfying conditions (A), (B) and (C) below:
(A) [, ep> 0 for every v € Fj,.(A) and every p € D(y);
(B) the map D(v) 3 p+— log f,y wp is b-Lipschitz, that is,

log / op’ — log / wp”l <bo(,p")
Y Y

for every o, o'’ € D(v) with f7 F=1= f7 p", and every v € F£ ;
(C) the map F}

loc

Sy f , #p is (c,v)-Holder, more precisely,

10g/<ﬁp—10gfsoﬁ' < ed(,%)"
Y Y

for every p € D1(v) and every pair v,% € F. .(A).
As a matter of fact, we want to think of the elements of C(b, ¢, v) as equivalence
classes of bounded functions for the equivalence relation

p1~ @2 & @17 =2y mq-almost everywhere, for every v € Fy,.

However, replacing an equivalence class by any of its members never results in
ambiguity, and so we ignore this formal distinction, in order not to overload the
notations.

Let us also note that (B) is automatically satisfied (with b = 1) in the particular
case when ¢ is nonnegative:

'z .
fﬂ, ep < sup o’ < sup o’/ inf o’

_ 0.(0. o) < 0.0, o).
f'y op” = infp” = inf p"/supp” exp(04(p’, p")) < exp(6(0, p"))

®)
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In the sequel we take b and ¢ large, and v close to zero; cf. Proposition 3.4 and
(12).

LEMMA 3.3: C(b,c,v) is a convex cone with —C(b,¢,v) NC(b,c,v) = {0}.

Proof: See [13, section 4] for the proof, which follows through standard argu-
ments. n

Calculating the projective metric © = 6., = log(8/a) associated to
C(b,c,v), we obtain:

f‘PzP f pa2p’
Lo’ [ o

I, 20

n(p, b, ¢ )fw}
f‘P ’pa 1,(P27f(p1p

alpr, p2) = inf{ §(P P <.01,<P2)

n(p, p, ¥1, 902)}

5

where the infimum runs over all p’ € D(v), p” € D(v), p € D1{7), and every pair
of local stable leaves v and 4; B(p1, p2) is given by a similar expression, with inf
replaced by sup. The explicit expressions of £ and n above are just (respectively)

exp(b0p's ") — Uy 20"/ [y 26) - xp(ed(%,9)") — (5 020/ [, #20)
exp(b0(¢', 0")) = ([, 10"/ [, 1¢") exp(cd(v,7)") — (f5 10/ [, 010)

PRrROPOSITION 3.4 (Cone invariance): There exists Ay < 1 so that L(C(b,c,v)) C
C(Agb, A2c,v) for every large enough b and c.

Proof: Let p € D(v) and pji be as defined above. Lemma 3.2(a) ensures
that p;x € D(v;x) and so fm wpjk > 0 for each pair j, k. As a consequence,
[, (Le)p=3; [ epix > 0, which proves the invariance of (A).

To prove the invariance of condition (B), let p/, p" € D(y) with fy P =1=
f,y p". Denote

_ |det(DF | v, 1)

o, = |det(DF | vjk)]
Ik |det DF|

/ F /! — 1/ .
(p © ) and p],k |det DF' (,0 OF)

Moreover, let p. '\ = pf; ./ fy . Py, and p3y = pl 4/ f,“ , Py Then, using condi-
tion (B) for ¢, followed by Lemma 3.2(b),
/ Pk / PPTk
Y2,k Y3,k

Y.k
<Z/ Pk exp bﬁ’(pgk,p]k))/7 kw;k
4

Y.k

i,k
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S P;'/,k
SZexp(b(?(pz,mp}’,k))—'—f”‘k ; / 2
Y Y.k

2.k & T3k

p]7
< exp(brif(s', o) Z f"‘ e / Pj k-
Yk Pik 4%k

By the same arguments as in Lemma 3.2,

7 @)= ) < o006 < 06440

Thus, replacing above we conclude that

/ (Lp)p" < exp(bri8(p,p") +6(0,0")) Y / PPk
Y 7.

< exp(bA28(p’, ")) / L),
v
as long as we fix Ay € (7,1) and suppose b > 1/(As — 7).

Now we prove invariance of condition (C).
Given two stable leaves y and 4, let p € D1(7y) C D(v). As we have seen before,

[Y(Lw)p= %:/7 ¢pix and A(L ©)p = %;/m ©(P)j ke

I
where (p),x: ¥j,x — R is defined by

| | det(DF | %; &) (x)|

(h)jk(z) = p(nF(z))| det D (F(z)) |det DF ()|

Since p;x € D1(7;,k), we may invoke property (C) for ¢ together with (6), to
conclude that

log /
.

s

< cd(Vk k)" < Ay d(y,7)”,

PPk _108/ PPjk
k 1.k

where

| det(DF | v;,)(mj k()

|
[det DF(m, p(a))] | ot Pk ()]

prk(@) = p(Fr; k(z))

with 7k = 7(%;,%, V5,5)- Next, we use the following estimate, which is given by
the auxiliary lemma 3.5 below:

og [ piym — log / o()sn| < Kod(v,7)",
Y

¥1.k 3.k
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for some constant Ky > 0 that does not depend on c. Altogether,

log /
~

7

< (C AZ + KO) d(’Ya :Y)Vy

©py.k — log / ©(P)g,k
.k Y.k

and so

tog [ (L) —1og [ (1 w)ﬁ, < (N + Ko)d(1,3)" < dacd(1,7)",

as long as we take Ay € (AY,1) and suppose ¢ > Ko/(Az — AY). |

In what follows, we fix j,k so we drop k in our notations (e.g., we write +y;
instead of 7; ), for the sake of simplicity.

We have reduced the proof of the last proposition to proving the following
auxiliary statement. We note that it is not necessary in the case we have an
f-invariant ambient unstable foliation (for instance, in the case derived from
Anosov systems).

LeMMA 3.5: There is Ko > 0 depending only on f, a, a1, b, such that

log / wp; — log / w(p),
Y v

for every ¢ € C(b,c,v) and every v,5 € Ff ., p € D1(v), and j.

< KO d(fY’ ;?)V

Proof: Weuse K, ..., Kg to denote sufficiently large constants, depending only
on f, a, a;, b. The previous arguments prove that

(1) P € DI(FY) = ﬁ € D(dh/‘th’?)
= p' = (p); € D(Ma1, p1,%;) C D(@1, p1,75)s

(i) p € D1(y) = p;j € D(A1a1, p1,75) C D(at, p1,7;)
= p” - 51 € D(&laula:)l])7

where a; = ajal® +ap. In (i), we suppose that a; is large enough so that Lemma
3.2(a) holds with the cone D(ay, p1,7) in the place of D(y) = D(a, p, 7).

It follows from (i) and (ii) that both p’ and p” belong to D(ay, i, 7;) which,
by (7), is contained in D(a/2, u,7;) C D(¥,). Hence, using condition (B) for the
normalized densities p’/ f% ¢ and p"/ f,“ R

log/ p’—log/ p"l.
s ]

9 < bo;(p’, p") +

log / pp' — log / pp"
Yy Y3
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In order to bound the two terms on the right hand side, let us take a look at
the relation
(10)

p(x) _ p(rfi(z)) |det Dn(fI(x))| |det(Df7|7;)(z)| |det DfI(m,(x))|

p'(x)  p(fImi(z)) |det Dmj(z)| |det(Df7 | y,)(mj(z))| |detDfr(z)| -

First, we need to examine d(7 f?(z), f2(r;(z))).

Let T’y be a leaf of the foliation we used to define 7;, passing by z, and let
€0 C o be a curve joining = to m;(x), with length(&) = d(z,n;(z)). The key
remark is that the angle of each iterate f*(T'g), 7 > 0 with the direction of the
foliation we just mentioned is bounded, in each point, by some constant H > 0,

which depends only on f. Then,
d(n(f’(z)), f(m;(2))) < H - d(v,%)

and we have

d(f?(z), f(;(2))) = length(f7(€0)) < (1 + H) - d(v, 7).

More generally,

(11) length(f*(€0)) < (1 + H)A,*d(, %),
1<1<j

a relation that we will use to obtain bounded distortion for || det Df7]|; that is,
due to the equation above, we have

Ilog |det Df(zx)| — Iogldethj(ﬂj(a:))IH < Kod(v,%).

This is because

j—1
lllog | det D f7(z)| — log | det D7 (m;(x))|Il < Y K - length(f*(4o))
1=0
=1 O
SK-(U+H) Y N d(1,7) S Ky (LHH) YN, - d(v,7) < Kz d(v,9)
=0 =0

where K is a bound for the Lipschitz constant of log || det Df||. Combining with
the assumption p € D1(7), we find

|log p( f7(2)) — log p(fimj(2))| < ar H* - d(y, 7).
On the other hand, by (p2),

| log | det D (f?(z))| — log | det Dr;(x)||
< ag d(f (), 7 (2))" + ao d(z, m;(2))™ < 2a0d(7,7)".
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Next, using also the Holder property of the tangent bundle to ¥, , in the same
manner as above for log | det(Df?)|, we have

|1og | det(Df | 3;)(@)| - log | det(Df? | 7;)(my(@)I| < Ko d(,7)*.
At this point we assume that
(12) O<p<p+v<m <.
Then, replacing the previous bounds in (10),
(13) | log p'(2) — log p" ()| < Kad(y,7)"

for some sufficiently large K4 > 0, and every x € 4; and j. In particular,

(14) 10g/ I *log/ p”‘ < Kqd(y, 7)1
5 5
and
sups (p"/p’)
1 6, (0, 0" = — = T < 2K, d(vy, F)M.
( 5) +,](P,p ) log (inf’_h(p///p/) - 4 (’Y”Y)

Inequality (14) provides the kind of bound we want for the last term in (9).
To bound the term b8,(p', p’), we combine (15) with the relation (recall, e.g.,
the proof of Lemma 3.2)

(16) 0;(p's0") < 04,,(0, p") +log(F2/71),

where

.. fexplad(z,y)*) — p"(y)/p"(z) -
n= mf{ explad(z, y)0) — f(y)plw) YT TR 7 y}

and 7 is given by a similar expression, with inf replaced by sup. All that is left
to do is to bound |log 71| and |log73|. Let us denote

B' = (p'(y)/¢'(x))exp(~ad(z,y)*) and B" = (p"(y)/p" (x))exp(—ad(z,y)*).

Clearly, p’ € D(a/2, i, %,) implies log B’ < —(a/2)d(z, y)* < 0, and analogously
for p” and B”. In particular,

|B' — B"| < |log B' —log B"| = |log p'(y) ~ log p'(z) — log p" (y) + log p" (z)|.
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On the one hand, (13) implies

(17) |B' — B"| < [log p'(y) — log p"(y)| + | log p'(z) — log p" ()|
< 2K4d(v,9)".
On the other hand,

(18) |B' — B"| < |log p'(y) — log p'(z)| + |log p" (y) — log p” ()|
S 2dl d(iL‘, y)llla

because p', p” € D(a1, p1,7,;). Since we are taking pu; > p + v, it follows that
|B' — B"| < K5 d(z,y)"* d(v,7)",

as long as K5 > max{2K}4,2a;}. Indeed, this last inequality is a direct conse-
quence of (17) if d(z,y) > d(v,%), and of (18) in the case when d(z,y) < d(v, 7).
Then,

1-B" ___|B'-B"| _ _ Ksd,y)"d9)"
1-B" = 1-max{B',B"} — 1—exp(—(a/2)d(z,y)*)

lOg < Kﬁ d(’Ya;?)V

Replacing in 7{ and 7, we find
log 7] > —Ked(y,7)” and logf; < Ked(y,%)",
and so, in view of (15) and (16),
0;(¢', p") < 2K4d(y,7)"" + 2Ke d(v,7)".

Finally, by (9) and (14),

log / pp' — log / wp”
7 7,

J

< (2b+1) Kyd(v, 7)* + 2bKed(v,7)" < Kod(v,7)"
for some Ky > 0, which concludes the proof of the lemma. 1

3.3 CONTRACTION OF THE PROJECTIVE METRIC. In the proof of the next result
we use the projective metric ©, associated to the cone of bounded functions
satisfying f7 pp > 0 for every v and every p € D(y). In the same way as we
calculated ©, one checks that © (@1, v2) = log(B+ (1, ¥2)/a+{p1, p2)), with

pa2p p2p
J, } and By (p1,p2) = sup { S, }
[, 10 o UL o0

ot (p1, p2) = inf{
Y

(taken over every p € D(v) and every stable leaf ).
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PROPOSITION 3.6 (finite diameter): For b > 0, ¢ > 0, v € (0, 1], the ©-diameter
Dy = sup{O(L ¢1,L¥2) : ¢1,9p2 € C(b,c,v)} of L(C(b, ¢, v)) is finite.

Proof:  As in the proof of Lemma 3.2, the argument has two parts. In the first
step, we bound D; in terms of the ©,-diameter of L(C(b,c,v)). Let 1,02 €
C()\Qb, /\26, 1/).

Given p', p" € D(vy) and p € D1(7), we have

oo exp(bH(p’, P”)) - eXp(b)\z 9(/)/7 P”)) /
> >
6(,0 yP 5 P1, QOZ) = exp(b«‘)(p’,p")) — exp(«b)\g O(P,, p,,)) ZT

where 7] = inf{(z — 2*2)/(z — 27*2) : 2 > 1} € (0,1). In just the same way,

0" o1, 02) S (0" 01, 02) € [T, 73l (B, oy o1, 02) € [11, ),
where 75 = sup{(z — z7*2)/(z — 27*2) : 2 > 1} € (1,4+00). As a direct conse-
quence, a(@1,p2) > 1 a4 (@1, 92) and B(p1, ) < 75 B4 (@1, 92), and so

O(p1, ¥2) < B4 (p1,p2) + log(7a/71)
for all @1, s € C(A2b, A2c,v) D L(C(b, ¢, v)).

Now we present the second and last step, where we show that the ©, -diameter
of L(C(b, ¢, v)) is finite, that is, there is a uniform upper bound for
[y @e2)e" /[ (Lp2)p'
L @en)e" [ [ (Ley)p”

(We continue writing j instead of j, k and [ instead of I, m so as not to overload

P1, P2 € C(ba c, V)v pl S D(7l)v p” € D(’Y”)

the notations)
In fact, we have

WL [ (Le)e Xy e2p] - [ 010)
i Rt — 2 { i
L@@} [y ea)p 305, ([ o107 - [y 026))

So all we have to do is to bound uniformly each positive part

Ly w20 - [y or0}) _ (f,, 020, - [y e171)
(f”Y;' <P1p;! . f*n’ ©20]) (f7;, 1P, - f'n' wapy)’

where the bars mean normalization of the densities. Recall also that pg €
D(\a, i, fy;) and p}’ € D(Ma, p, 'y;’), by Lemma 3.2. Hence our claim that the
quotient in the equation above is uniformly bounded will follow if we show that

fw ¥ p2

(19) sup
f% Y/

< 400
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where the supremum is taken over every ¢ € C(b,c,v), every p; € D(A1a, 4, V1)
and p; € D(Aa, p,¥2) with f'n p1 = fw p2 = 1, and every pair of local stable
leaves vy, ¥2-

Let #; and 65 be the projective metrics associated to D(y1) and D(yz),
respectively. First, we use condition (B) to get

/ wp1 > eXP(—b91(p1,1))/ ¢l and wpa < exp(sz(Pz»l))/ 2l
7

82! Y2 Y2

where the same symbol 1 denotes two slightly different objects, namely, the
constant function on v, satisfying f*n 1 = 1 and the constant function on v,
with f,y2 1 = 1. Let D; be some uniform upper bound for the #-diameter of
D(Ma, i, y) CD(v}, v € F2; cf. Lemma 3.2. Then

locy

exp(—D1) < exp(—bf1(p1,1)) <1 < exp(ba(p2, 1)) < exp(D1).

Finally, let 1: 7, — R be given by 1(z) = 1(n(z))|det Dx(z)|, where 7 =
7(y2,71). By (pl), both 1 and 1 belong to D(ap,1,72). On the other hand,
recall (7),

D(ag, 1,72) C D{(ag, 1, v2) C D(a/2, i, 72)-

Let Dy be a uniform upper bound for the 82-diameter of D(a/2, ,v2) C D(72).
Then, using conditions (B) and (C) for the function ¢,

f'Yz el < f72 (P]; f’Y'z vl
Lot~ [l [, el

We conclude that

< exp(bf2(1, i))exp(cd(*yl,'yg)") < exp(b Dy + ¢).

fw P2

fA,1 ¥ o1
for all the v, p1, p2, 71, 72 under consideration, which completes the proof of
(19). Altogether, we have shown that

< exp(26 Dy + b Dy + ¢)

Sy Le2)e" [, (Len)p Eia Uy, 020, - [y 01P1) <2
LpLe)e” [L(Leded 2,0 fﬁ, 018, - [y p2P1) ~ ”

where

T
To = ?%exp(.?a +2bDy +bDy + )
1

for every ¢ € C(b,c,v), leaves ¥',v" € Ff ., and normalized densities p' € D(y')

and p"” € D(v"). Then the ©-diameter of L(C(b,c,v)) is bounded by log Y3.
|
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In what follows we let 72 = (1—e~P2) < 1. Then, in view of our Proposition 3.6
and proposition 2.3 of [13], the operator L is a T>-contraction for the projective
metric ©.

3.4 AN INVARIANT MEASURE FOR THE ROOT MAP. We will now use the se-
quence (@, = L™ 1), to construct the measure yz 4 we promised in the beginning
of this section. Then, in the next subsection, we will spread this measure to all
M, constructing the SRB-measure for f, that we will name puyg.

It follows, from L, being a contraction, that

O (k. 01) € O(gr, v1) = 0 (exponentially fast) as k,I — oc.

We shall use the statement of weak*-convergence given by the next proposition
to construct the measure p 4.

For the proof we need the important fact that the local stable foliation is
absolutely continuous (see Appendix A of [13]): projections along the leaves of
]:s

e are absolutely continuous maps with Hélder continuous jacobians. As a

consequence, we have, for every m-~integrable function 1,

IREE /(/ww ) ().

where H: A — (0, 4+00) is such that log H is (ag, v9)-Holder continuous, for some
ap >0 and 0 < vy <1, and H, = (H|y)m,, defines a disintegration of m (m is
just the quotient measure induced by the Lebesgue measure m in the space of
local stable leaves).

PROPOSITION 3.7: Given any ©,-Cauchy sequence (¢y)n in C(b,c,v), normal-
ized by [ 4 ¥ndm =1 foralln > 1, and given any continuous function ¢ : A — R,
the sequence ([ pntdm),_ is Cauchy in R.

Proof:  Consider first the case when ¢ > 0 and log® is (a/2, u)-Hélder. In
particular, log 1 is (a/2, u)-Hoélder along each local stable leaf v (with respect to
the induced metric). We write

/Acpnwdm=/</7<pn¢dpv) dﬁb(*r)=/(/7 <Pn¢Hv) dm(y)

where H, = H | . Note that (¥H,) is strictly positive and log(¢H,) is (a, u)-
Hoélder, as long as we fix a > 2a¢ and p < vp; of. (7) and (12). Moreover,

/A‘Pndm:/</y¢nH’Y> dm(y)
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and H, > 0 with log H,, an (a, u)-Holder function. Therefore, given k,1 > 1,

ﬁ, wiH, [ oxvH,
2 o4k, d FT——" < Bi(pr ) forally.
Tty > a+(pk 1) an I, < B+(pr, 1) for all y

On the other hand, [, ordm =1 = [, ¢;dm implies that f,y wrH5 < f,y o1 Hy
for some local leaf 4. Thus,

[, oxHy < B (px, 1) J5 Prtly < O+ (@r01)
[y Hy = ailer, ) fioHy ~

implying that

for all 4,

d
JaPbIm o o) g al k1> 1.
As a consequence,
fA oY dm _ 1‘

Saopdm =
(20) l /A putp dm — /A Wﬁdm{: /A saﬂﬁdml e
< sup W,l (69+(<Pk,901) _ 1) ,

and the proposition is proved in this case.
Now, for an arbitrary p-Holder continuous function ¥: 4 — R, we write

Y=vj-v5 where yE=_(4]+v)+B

and B > 0 is chosen large enough to ensure that logy3 is (a/2, u)-Holder
continuous. The previous argument applies to ¢§ and so, by linearity, the
proposition holds for .

Finally, given any continuous function ¢ and any € > 0, we may take ¢ a
p-Holder function such that sup |1 — 9| < . Then, for every k,I > 1,

}/Awwdm—/Aw«ﬁdm‘ S’/A%@dm—/j‘wld]dm‘_,_gs;

recall that we suppose [ 4pndm =1 for all n. By the previous case, the right
hand side is bounded by 3¢ if ¥ and I are large enough, and so we have proved
that [ 4 Pn¥ dm is a Cauchy sequence also in this case. |

We are now in a position to introduce the SRB-measure y 4 of the map F on A.
For that we consider ¢, = L™ 1, for each n > 1. Then, by Proposition 3.7, (¢, )n
is a ©-Cauchy sequence, and so it is also a ©.-Cauchy sequence. Moreover,

/(pndm:/(L"' 1)1dm=/ 1(U"1)dm=/ ldm =1, foralln>1.
A A A A
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Then we define p4 to be the weak*-limit of (L™ 1)m = (F™).m

/7,bdﬂ_,4:lim/A(L"I)demzlim/A(Q/)oF")dm

for each continuous ¥: A — R. Clearly, p4 is invariant under the map F: for
any ¥,

/(dyoF)d,uA:lim/A(z/)oF""'l)dmzlim/A('LpoF")dm:/wduA.

The following lemma, in rough terms, asserts that p 4 behaves as an absolutely
continuous measure (with respect to Lebesgue measure) if one quotients out local
stable leaves. Let Fy be the o-algebra of Borel sets which are the union of local
stable leaves: B € Fy if and only if B is a Borel subset of M and, given any local
stable leaf «y, either v N B = () or v C B. Clearly, m is just the restriction of m
to Fo.

LEMMA 3.8: There is K > 0 such that, for every 1) € L'(Fp),

%/AwdmﬁfiﬁduASK/Ad’dm-

Proof: Let 7, 4 be local stable leaves and H, = H|y and Hy = H|Yy be as
in the proof of Proposition 3.7. In addition, let H, = (Hy o m)|det Dx|, with
7 = 7(%,7). Recall that log H is (a, vg)-Holder, with (ag, v9) depending only on
f. Therefore, up to choosing a, a; larger than ag, and g, yq smaller than vy, as
n (7), (12), we have H, € Dy(v) and Hj, I?., € D(a/2, u,7). Then properties
(B) and (C) give, for each ¢ = L* 1

[, exHy JsoxHy [ on H
fﬁ(pkH f‘pkH f@k

where Do is a uniform bound for the f-diameter of D(a/2, p, %) C D(F); see
Lemma 3.2. For simplicity, we write K = exp(c + bDyp). Recalling that

/(L%H:J dﬁl(‘?)=/<pkdm:1

we conclude that f7 ¢ Hy < K for every local stable leaf y. Then

/¢(L1dm /¢ (/Lkl) )dm()

<K/1/) ydm(y K/t/)dm,

" < exp(bO(F,, Hy) + cd(7,7)") < exp(bDq + )
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note that functions 9 € L'(F,) are constant on each stable leaf y. Passing to
the limit as k — oo, [ dua < K [, ¢dm. The dual inequality [¢dus >
K! f 4 ¥ dm may be derived in just the same way, and so the argument is com-
plete. |

Remark 3.9: A more efficient way to proceed in order not to suppose the ex-
istence of just one good rectangle is the following: we can suppose that in the
first negative iteration, the (pre)image of each rectangle crosses all the rectangles.
If this is not the case, one can replace f by f? for some suitable p > 0 in the
tower construction. It is a well known fact (cf. [14]) that the exponential decay
(and also central limit theorem) for f? (for some p > 0) implies the same result
for f. Hence, the trees of local stable manifolds in different rectangles will be
comparable. That is, there are constants 0 < n; < ng such that, given any 7,
%', the proportion of the number of local stable leaves in their preimages in the
intersection of any floor of their trees with a fixed rectangle is between n; and ns.
So we can compare the integrals in the preimages of v and +' in each rectangle,
therefore we can compare f_y L pp and f"r’ Ly

3.5 AN INVARIANT MEASURE FOR THE ORIGINAL SYSTEM. In this subsection
we construct an invariant measure for f, which will result in the SRB measure.
Let A = [J{A1,As,...} be as in the end of section 2, that is, F|a, = f7]4,.
Fixed a j, put A;; = f’(Aj), for ! =0,...,7~ 1. Since F is a first return map,
the sets A, are disjoint, for all pairs j,I. Moreover, they exhaust (mod0) M.
So, let us define the following measure over M:

to(B) = pa(fH(B)), VBe€Aj;, B aBorelset.

The measure of other Borel sets (not contained in one single A, ;) is defined in
the natural way. It is obviously f-invariant, because, if B is a Borel set in A,
with [ > 1, we have

po(f7H(B)) = pa(F 7 7H(B)) = pal(f~H(B)) = puo(B),
and if B is a Borel set € A we have
po(f7H(B)) = po(F~(B)) = pa(B) = po(B).

Now, uy(f~1(B)) = puy(B) for general Borel sets by o-additivity.
Now, we are led to the following lemma:
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LEMMA 3.10: uy is an f-invariant finite measure.

Proof:  All we have to do is to prove that pg(M) < +o00. However,

-1

.

pip(M) = MB(Z

j=11

A =5 maldy).
1=1

I
=)

By Lemma 3.8 we know that
na(Ay) < K -miA,)

and, by the second section of our paper, we know that m(.A;) “\, 0 exponentially
fast as j — oo; then j - m(A;) \, 0 exponentially fast as j — oo.
Therefore,

o

poM) = i palA) < K-> j-m(4) <co. A
j=1

g=1
Now, we can define p( as the probability we obtain normalizing pu:

o = pio/ Ho(M)-

A priori, the fact p 4 is F-ergodic, alone, does not ensure that pg is f-ergodic.
However, in the next section, we prove, not only in the context of this section,
but for the general setting of the paper, that ug is Kolmogorov and SRB measure
for f.

4. Stochastic properties of the original system

4.1 EXISTENCE AND UNIQUENESS OF THE SRB MEASURE. In this section, ug
refers both to the measure we constructed in the last section or the SRB measure
we obtain as a direct consequence of section 2 (see remark at the end of that
section).

We are able to prove:

LEMMA 4.1: (f, A, uo) is Kolmogorov. That is, if B is the g-algebra of Borel in
A, there exists a o-subalgebra By C B such that:
(1) £71(By) € B
(2) Ny>o S ™(Bo) = 1, where 1 is the o-algebra consisting in sets equal to A
or QY, modulo zero-measure sets.
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(3) VausolB € B; f~"(B) C Bo} = B(mod0). That is, the o-algebra spanned
by the Borel sets which have some preimage (of some iterate of f) in By is,
modulo zero-measure sets, equal to B.

Proof:  During this proof, all constants written with the greek letter ¢ are
positive.

Let us define By = \/,,<o Rn, where Ry = R is the original Markov partition
(intersected with the trimmed tower), and R, = f*(Rg),n < 0. Therefore, By
is (modulo zero-measure sets) the o-algebra spanned by non-positive iterates of
rectangles in partition Rg. Since such iterates are Borel sets of A, we obtain that
By C B.

(1) Given By € By, by lemma 5.2 of [9], By is approximated (in measure)
by a disjoint union of elements of the partition \/,’;=0 Ru,k < 0, if ||k|| is big
enough. So, there is no loss of generality in supposing that By € \/;i:0 R,
for some k € —N. By the Markovian property, the preimage f~!(B,) of By is
contained in a disjoint union of elements of Vfl;é R4, and so it is in By. Therefore,
F~1(Bo) C (Bo).

(2) Let us start by defining the global stable manifold of z € A. Since we
know that local central manifolds in A (we are talking about the ones we have
after we applied the elimination algorithm) are, in fact, local stable manifolds
(in the sense that, if x, y belongs to such a manifold, d(f"(z), f*(y)) — 0 and
the Liapounov exponents calculated along central directions are negative), we
define the global stable manifold €2, of z € A as being the points y € A such that
d(f™(z), f*(y)) = 0 as n — oo. (Notice that we conventioned to call A the set
we obtained after we applied our elimination algorithm.)

Of course, each global stable manifold will be a union of local central mani-
folds, and each local central manifold will be contained in just one global stable
manifold. An obvious fact is that the image by f of a global stable manifold is
another global stable manifold.

So, let B be such that po(B) > 0 and, for every n > 0, there is B, € By such
that B = f~"(B,). That is, we have f*(B) € By, for all n > 0. In this case,
if z € B, then 0, C B. This is because, if some local central manifold v is in
BN Q, and another, say 7/, is in B¢N £, then that will be an iterate m such
that f™(v) and f™(v') will be in the same local central leaf. However, such a
leaf must be in f™(B) = By, since By, € By. This is a contradiction with the
fact that o < B¢, therefore f™(v') C f™(B°) = (f™(B))".

On the other hand, we are under the assumption that ug(B) > 0, and we
know that po(B) = po(Bn), Vn. Given € > 0, let us take By € VZ:O Ry, for
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some k < 0, such that po(BoN B)/po(Bg) > 1 —e. So, for some nq, there is some
element B in partition Ry, , such that By C By and po(BNB1)/pe(B1) > 1 —e.

Because the Markov partition R is topologically mixing, there is ny such that,
for any R € R, f™2(R) crosses all rectangles in the Markov partition. Therefore,
Uy = f7+72(By) crosses all rectangles in R.

It follows from the fact that the SRB measure is absolutely continuous that
my,(T'y N B)/my(T1) > 1 - €, for all unstable leaf I'; in By, € — 0, as e — 0.

Calling U = f™*"2(B), using our distortion bounds in the unstable directions
for leaves in Uy (see Lemma 2.11), we have that

mu (M2 NU) /my (M2 (T) > 1~€¢”, €' =0 ase —0.

Note that for any n} < 0, any unstable leaf T' contained in some element of Rn;
will have the same bounds for an unstable volume of the images f™1+" (') and
distortion in unstable directions. So, we do not have to be worried about the fact
that By and ny depend on e.

Since U also consists in global stable leaves, and the stable foliation is abso-
lutely continuous (it coincides a.e. with Pesin’s stable foliation), we have that
po(B) = po(U) > 1 — €"”, for some ¢ — 0 as ¢’ — 0. This implies that
tp{B) = 1 and finishes this part of the proof.

(3) For this proof we use the following theorem (see ][9], chapter 0, theorems
5.4 and 5.5):

THEOREM 4.2: Let (A,B,pp) be a probability space where A is a separable
metric space, and B is the Borel o-algebra of A. Let P,, n = 0,1,2,... be a
sequence of partitions such that

HBTM(,%E” diam(P)) = 0.

Then, \/;—, Pr = B(mod 0).

We recall that the 0-th floor A of the tower is divided into subsets A;jm,j >
0,m > 0, such that F|4,, = f’|4, and all points in A; ,, belong to the same
j-cylinder. By construction, such subsets are elements of By. So, we define the
(infinite countable) partition P of A given by P := {P, ;51,0 < I < j}, where
Pjmi = f'(A;m). This implies that given any set P € P, there exists a negative
p such that fP(P) € By. Given any set P = P, ,,; in P and a natural n, f*(P)
has central stable diameter diam® (defined as the supremum of the diameters of
the intersections of local center-stable leaves with P) bounded by

const - diam® (A) - ¢!,
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where the constant depends only on some uniform bound for the curvature of the
local central leaves.

Now, just take P, = Vi _,.(f*(P)). The contraction in unstable directions
we have if we iterate backwards and the bound we just obtained above (for
the center-stable direction) imply that lim,_, o (SUppep, diam(P)) = 0. By
Theorem 4.2, /<., Pn = B(mod0). Since the partitions we defined are contained
in V,s{B € B; f~™(B) C By}, this finishes the proof of (3) and our lemma.
1

So far, we have proved that (f, uo) is mixing, since every Kolmogorov system
is mixing (and so, ergodic, too). We can now obtain the SRB property (m is the
ambient Lebesgue measure):

COROLLARY 4.3: pg is the unique SRB measure of f in M. The measure pg is
ergodic and satisfies

1 n—1

ﬁzw(ﬁ(ﬂf))“’/(ﬁduo asn = oo,

2=0
for every continuous function ¢: M — R and m-almost all x € M. In particular,

o is the unique SRB-measure for f in M.

Proof: Given any continuous ¢ and any pair of points z1, z2 belonging to the
same stable leaf, then it is easy to see that

1 n-1 1 n—1 )
- Z @(f?(z1)) converges <& - Z @(f?(x2)) converges,
=0 1=0

and in that case the two limits are the same. Let A be the set of points x € M
such that limn~! Z?:—ol @(fi(z)) does not exist, for some continuous y. Then A
is a union of stable leaves and the ergodic theorem gives po(A) = 0.

If m{A) > 0, projecting A along the center-stable manifolds (which are
absolutely continuous), we would obtain that the Birkhoff limit above would
not exist for some set S with positive m, measure in some unstable leaf I' C A.
This implies that ug(A) > 0, since g is absolutely continuous. This contradicts
the last paragraph. So we get m(A) = 0.

Now, given any continuous ¢, define ¢(z) = limn~? Z;:ol o(f?(z)). We have
just shown that ¢ is defined almost everywhere, with respect to both measures
1o and m. Moreover, by the ergodic theorem, ¢ is constant in stable leaves (in
M) and @ o f = @ at pp-almost every point. The same argument of the last
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paragraph applied to the set {x € M : ¢(f(x)) = ¢(z)} gives that po f = ¢ at
m-almost every point. Then the fact that pg is mixing implies

‘/M(¢—/¢duo)¢duo = l/M(cﬁof")qsduo-/@duO/(pduo

for every n > 0 and every continuous function ¢.

— 0

As @ is constant in local center-stable leaves, because of the same argument
we used in the paragraphs above we obtain that the set {z € M : ¢ # [ Puo}
must have null Lebesgue measure.

@Z/ﬁdlm:/(ﬁduo,

m-almost everywhere and pg-almost everywhere. This proves ergodicity, the

Therefore,

SRB-property, and uniqueness, simultaneously. |

4.2 DECAY OF CORRELATIONS AND CENTRAL LIMIT THEOREM. At this point

we can deduce decay of correlations and the central limit theorem from the prop-

erties of A that we obtained above. For this, we can choose between at least two

different ways. It is not difficult, for instance, to adapt the techniques in [13] of

cones and projective metrics to obtain our theorems. However, since this paper

may be quite long, we choose here to use the framework of [14] for this purpose.
The following notions are borrowed from [14]:

Definition 4.4 (Hyperbolic product structure): A set A’ C M has hyperbolic
product structure, if there exists a continuous family of unstable disks F* =T"
and a continuous family of stable disks F* = -y such that
(i) dimT" + dim~y = dim M;
(ii) the I'-disks are transversal to the y-disks with the angles between them
bounded away from 0;

(iii) each I-disk meets each y-disk in exactly one point; and
(iv) A= UT) N (U7

Definition 4.5 (s-subsets and u-subsets): We say that a subset S’ of a hyperbolic
product structure set S is an s-subset if it also has a hyperbolic product structure
and its defining families can be chosen to be the same unstable family F* of S
and a subset G° C F*® of the stable family of S. We have an analogous definition
for u-subsets.

We have the following facts about A:
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(P1) A has hyperbolic product structure. Moreover, mr(ANT) > 0, where mr
is the conditional Lebesgue measure over I

In fact, the local unstable and local center-stable leaves form two families of
disks as in the definition above. As the local center stable foliation is absolutely
continuous, and m(A) > 0, we have mp(ANT) > 0.

(P2) There is a countable number of s-subsets of A (union of local stable leaves
restricted to A), say A1, As, ..., such that

- on each I'-disk (contained in an unstable manifold), mr{A —|JA,)} = 0;

- for each 4, Ir; € N* such that f™(A;) is a u-subset of A; we require in fact
that, for all z € A, f(v(z)) Cv(f™(x)) and f(T'(x)) D L (f™(x));

- for each n, there are at most finitely many ¢ with r; = n;

- min{r;} > some ry depending only on f.

Note that if the lower bound ro was one, we would just take the collection
{A,} as a reenumeration of the collection {4; N Cjm,C)m is a j-cylinder}. In
this case, if A; is contained in some A,, we just put r; = j.

Let us define the countable partition Q of A consisting in

Q:={fY(A4,),0<1< j}

Since a finite number of sets .A; may present a return time j < ro, we divide
such ones into subsets A;,t consisting in points that stay together in the same
component of the partition @ until they have a return to A with return time ¢
(by f) greater than or equal to rg. Then, for such points we put r; =t. So, it
suffices to take the collection {A;} to be a reenumeration of

hd l] Cij? lﬂ;j 2 70, C; k isa j-cylinder}U
s
{" l/

73T

NCr, k;J < 70, Cr, k' i8 a r,-cylinder}.

(P3) There is a partition P of | J f*(.A) to which we can define the separation
time between two points in .4, that is, the time their images stay together in the
same rectangle of such partition. Such a separation time so(.,.) has the following
properties:

(i) so(.,.) > 0 and depends only on y-disks containing the two points;

(ii) the number of “distinguishable” n-orbits starting from .4 is finite for each
n;

(iil) for @, y € Ay, so(2,1) > 7, + s0(S™ (z), /7 (9))-

In fact, just take P as the restriction of R to A. Then, so will just be the
time that two points in A stay together in the same rectangle of R (or P), and
it is, by definition, non-negative. As points in the same «y stay together forever,
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sp is constant in 7. This confirms property (i). If we fix n, the number of
“distinguishable” n-orbits starting from A is just the number of n-cylinders that
intersect .A. Property (iii) is a trivial consequence of the definition of the A,.

We saw that there exist C' > 0,0 < ¢ < 1, 0 < A\, < 1 such that the following
hold for all z, y € A:

(P4) We have contraction along v-disks. For y € v(z), d(f™(z), f*(y)) <
C's™,¥n > 0.

This we have by construction of A and the tower. By Propositions 2.9 and
2.19, we have ||Df"(z)|E°*|| < g™, for z € A and for all n > 0. Therefore, the
center-stable manifolds of A are in fact stable manifolds, with the contraction
above.

(P5) Backward contraction and distortion along I'. For y € TI'(z) and
0 <k<n<splz,y), we have

(a) d(f"(2), (1)) < C - A2ED "

(v ) |

1 H dethu(fl(x)) < C’/\so(z,y)—n‘
L G D) S° ™

(a) is due to the fact that z, y belong to the same sg(z, y)-cylinder, and the
same unstable leaf. The proof of (b) is similar to the proof of Lemma 3.5 between
equations (11) and (13).

(P6) Convergence of D(f*|T") and absolute continuity of the local center-stable
foliation.

(a)} There exists 0 < & < 1 s.t. for y € v(z),

det Df*(f*(z)) -
Hdewfu(ﬂ(y)<c.a, Vn > 0.

(b) For I'' T € F*,if ©: TN A - TN A is defined by ©(z) = y(z) NI, then
O is absolutely continuous and

d(@:lmw ﬁ det Df“(f*(z))
dmr det Df(f*(O(z)))’

Again, the proof of (P6)(a) looks like the proof of Lemma 3.2. Taking x and
y in the same vy, their distance is (uniformly) bounded by the supremum of the

diameters of the center-stable leaves, which we will call d,. As in Lemma, 3.2, we
have

| det(DF*) (£ ()
H [det (D7 (S ()] =
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Y llog|det(Df*(f*(2)))| - log |det(Df*(f*(y))| | < (by (P4) above)

=n - | -
D K- d(fi@), f'(y) < Ku- Y ds-s' <Ky-dy-a”,

where K, is a uniform bound for the Lipschitz constant of Df*. Property
(P6)(b), in our context, is a consequence of (P3)-(P6)(a).
(P7) There exists Cj > 0 and 6y < 1 s.t. for some I € F¥,

mr{z e'NA:ri(z) >n} < Cy05, n>0.

The proof of this fact is a corollary of the proof of Proposition 2.12. By that
proposition, we know that the set of points of .4 that stay a long time to have
its first return (to A) is an exponentially small (conditional) Lebesgue measure
set. Therefore, proceeding as in (P2), we have that the fact above is valid for the
subset Sy of points = in A such that r,(z) > n is the first return time to A. It
is easy to see that the same property is valid for the subset Ss of points z such
that r;(z) > n is the second return time and so on, until, at most, S,,. Since
the number of sets S_ we constructed is finite, we have that their union satisfies
(P7), as we wanted to prove.

Finally, we have

(P8) p is the unique SRB measure of f (in A) and (f™, po) is ergodic Vn > 1.

This is valid because we proved that (f, o) is mixing, therefore (f7, o) is
mixing for all n, therefore (£, ug) is ergodic, for all n. (Indeed, (fV, o) mixing,
for some fixed N, is equivalent to (f, tio) mixing.)

Having proved all these facts, our Theorem A can be easily obtained from the
following result of L. S. Young:

THEOREM 4.6 (Exponential decay of correlations [14]): Let f: M — M be a
C? diffeomorphism on a compact manifold M, admitting a subset A C M with
properties (P1)-(P8). Then (f, o) has exponential decay of correlations in the
space of v-Hélder continuous functions. That is, for v > 0, if we define

H, :={p: M - R/3Cs.t.lo(z) — p(y)| < C-d(z,y)", Yz, y € M},

then, for functions ¢, ¥ € H,, there exist K = K(p,9) and 7 = 7(v) > 0 such

that
[ otworyauo— [vauo [ duo

Similarly, Theorem B follows from:

<K- -
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THEOREM 4.7 (Central limit theorem [14]): Under the same hypotheses of the
last theorem, every ¢ € H, with [ dug = 0 satisfies the central limit theorem
with respect to (f, o), with o = 0 if and only if ¢ = ) o f — 4, for some
P € L2 (o).
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