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A B S T R A C T  

We s tudy  part ial ly hyperbolic a t t rac tors  of C 2 dif feomorphisms on a com- 

pact  manifold.  For a robus t  (non-empty  interior) class of  such diffeomor- 

phisms,  we cons t ruc t  Sinai Ruel le -Bowen measures ,  for which we prove 

exponent ia l  decay of correlations and  the  central  limit theorem,  in the  

space of HSlder cont inuous  functions.  The  techniques  we develop (back- 
ward induc,ng, redundancy ehmination algomthm) should be useful in the  

s t udy  of the  s tochas t ic  propert ies  of  much  more  general  non-uni formly  

hyperbolic  sys tems .  

1. I n t r o d u c t i o n  

In this work, M will always be a compact manifold and 7-/ will be the space of 

H51der continuous functions on M. Moreover, #0 is a physical or SRB (Sinai- 
Ruelle Bowen) probability measure for f .  That  is, It0 gives the time averages 

n--1 
1 

/Zo = n-++~lim (~p(z), ~p Dirac measure at p 
n 

j=o 

of a set B(#0) of points z E M with positive Lebesgue measure. This set B(#0) 

will be called the bas in  of #0. 

* This work was partially supported by IMPA and CNPq- 01/2000. 
Received May 31, 1999 and in revised form January 18, 2001 

29 



30 A.A.  CASTRO Isr. J. Math. 

We say that (f,  #0) has e x p o n e n t i a l  decay  o f  c o r r e l a t i o n s  in 7t if there 

exists r < 1 and for each ~, r �9 7 / there  exists K = K(~,  r > 0 so that 

IC~@,r _< K r  '~, for all n >_ 1. 

Our main result, Theorem A below, states that  a large class of SRB measures 
supported on partially hyperbolic attractors of a diffeomorphism have exponential 
decay of correlations in 7/. We explain this in precise terms in the next subsection. 

As a consequence of the proof of Theorem A we also obtain, in Theorem B, 

that these systems (f ,#0)  satisfy the central limit theorem in 7/. That  is, for 

every ~ E 7-/ 
n - 1  

1 ~ _ , ( ~ o o f a _ : ~ o d # o  ) 

converges in distribution to a gaussian law N(0, a): 

f; (") 1 -2-~a 2 # o ( { X � 9  ~ - ~ e x p  dt, for e a c h a � 9  
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1.1 STATEMENT OF MAIN RESULTS. We take f :  M -+ M to be a C 2 diffeomor- 

phism on a compact manifold M, admitting a compact invariant subset A C M 

such that: 

(1) There exists an open neighbourhood M of A such that 

oo 

closuref(M) c M and A = [-] ( f~(M)) .  
r t = 0  

(2) A is partially hyperbolic, meaning there exists a continuous Df-invariant 

splitting 

TAM = E cs @ E uu, dim(E ~ u ) > 0 ,  

of the tangent bundle restricted to A with the following properties (we fix 

a Riemannian metric in M, once and for all): 

(a) E ~u is uniformly expanding: 

- - n  u u  [[Of [El.(x)[ [ _< CA n, for every n > 1 and x e A; 
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(b) E r is dominated by E"=: 

n C8 --n UU llDf IE~ II lIDS I~:.<,)II --- c::', for n _> I and x E A, 

where C > 0 and 0 < ~ < 1 are independent of x and n. 

These conditions imply (cf. [3], [7]) that  there exists a unique foliation (or 

lamination) $-u~ of A which is tangent to the strong-unstable bundle E~ u, at 

every x E A. Its leaves are C 2 submanifolds immersed in M and the a t t ractor  A 

consists of entire leaves. On the other hand, we also suppose that:  

(3) There exists an invariant center-stable foliation .T cs of a neighbourhood of 

A, tangent to the central bundle E c~ at every point of A. 

We reduce the neighborhood M if necessary, so that  it is contained in the 

domain of $-c8. Our next assumption is 

(4) f in  admits a Markov partition T~ = {R0, R 1 , . . . , R N } ,  g >_ 1, with a 

property of topological mixing: given i, j E {0, 1 , . . . ,  N}, there exists no >_ 

1 such that  

f'~(R~) M R 3 r 0 for every n _> no. 

Here, Markov partition is defined in the same way as for hyperbolic systems 

(see [12, Chapter  10]), with jzc8 in the role of stable foliation. See section 2.1 for 

details. We want to stress that  in our setting the iterates of a Markov parti t ion 

T~ need not have diameters going to zero. In other words, the set of points z E A 

with a given itinerary with respect to 7~ is not necessarily reduced to a single 

point. 

We are going to distinguish two types of rectangles in T~, according to the 

behaviour of the center-stable direction E ~.  Let A~ < 1 be fixed. We call 

Ri E T~ a g o o d  r e c t a n g l e  if E ~ is uniformly contracting, 

at every point x E Ri .  All the other elements of T~ are called b a d  r e c t a n g l e s .  

On a bad rectangle D f  may exhibit expansion along the center-stable directions, 

but it should be weak: 

(5) There exists some good rectangle and, for some sufficiently small 60 > 0, 

we have 

IIDfIE~SI] < 1 + 60 for any point x in a bad rectangle. 

We shall see, in Proposition 2.12, that  if 60 is taken small enough then the 

center-stable bundle is mostly contracting in the sense of [2]: all the Lyapounov 
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exponents along E c8 are negative. Our precise conditions on 50 are stated in 

Proposition 2.12, and equations (3) and (4). It depends only on A~, the com- 

binatorics of the Markov partition T~, and distortion bounds for the unstable 

direction. 

It follows from [2] (see also other references below) that f admits some SRB 

measure #0 supported in A, and one can check that #0 is unique. Actually, our 
methods allow us to give a new proof of these facts. Above all, we prove that 

(f, #0) has exponential decay of correlations: 

THEOREM A: Under assumptions (1)-(5), the diffeomorphism f has a unique 

SRB measure #0 supported on A. Moreover, such SRB measure exhibits expo- 

nential decay of correlations in the space 7t of H61der continuous functions. 

Moreover, 

THEOREM B: The system (f,/to) satisfies the central limit theorem in the space 

of HSlder continuous functions. 

Let us mention that similar results were obtained recently by Dolgopyat [6], 
independently and through a very different approach, for another class of partially 

hyperbolic attractors with mostly contracting central direction. 

1.2 EXAMPLES. (1) Carvalho [4] proved existence and uniqueness of SRB mea- 

sures for certain partially hyperbolic attractors (in dimension > 3) obtained by 

modifying an Anosov diffeomorphism by isotopy (along the stable direction) in 

a neighbourhood of some periodic saddle point p, in such a way that this pe- 

riodic point goes through a Hopf (respectively, saddle-node or period-doubling) 

bifurcation. The diffeomorphisms one gets in this way have a non-hyperbolic 

attractor satisfying conditions (1), (2), (3) of the previous subsection. With a 

slightly more detailed construction than was needed in [4], it is possible to ensure 
that  these diffeomorphisms also satisfy condition (4). For this, one should fix a 

Markov partition R of the original Anosov diffeomorphism, and a periodic saddle 

in the interior of some Markov rectangle, and then take the isotopy with support 

contained in that rectangle. In this way, T~ will also be a Markov partition for 

f ,  although its refinements V ~ - n  f~(~) will not have diameter going to zero. 

Finally, if the isotopy is carried just a little beyond the Hopf bifurcation, then 

the diffeomorphism satisfies condition (5) too. 

This procedure extends to much more general modifications of the original 

Anosov diffeomorphism, other than Hopf bifurcations. The main requirement 

is that  the perturbation should preserve partial hyperbolicity with existence of 

central-stable foliation 9 ~c8. We can even perturb the initial system inside several 
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Markov rectangles, as long as hyperbolicity is kept in at least one of them (at 

least one good rectangle). In fact, this approach provides open classes of systems 

to which our theorems apply, as we prove in Proposition 1.1 and Corollary 1.2 

below. 

(2) Let us begin with an Anosov C2-diffeomorphism f 0 : T 3  ~-~ T3 on the 

3-dimensional torus, with one expanding and two contracting directions. We 

suppose that  the norm of Dfo along the stable subbundle and the norm of D f o  1 
along the unstable bundle are bounded by a constant A0 < 1/3. Let p be a 

fixed point of f0 and Rp a Markov rectangle (of some Markov Parti t ion of f0) 

containing p in its interior. Let 5 > 0 be a small constant, such that  the distance 

d(p, ORp) > 35. Denote V0 = B(p, 6/2). Then, in the same manner as in [2], 

we deform f o  1 inside V0 by an isotopy obtaining a continuous family of maps 

fv, 0 < u < 2 in such a way that  

(i) The continuation pi, of the fixed point p goes through a Hopf bifurcation, 

and becomes a repeller for values of u between 1 and 2 (staying all the time 

inside V0). For u = 1 we have the first moment  of the Hopf bifurcation, 

with f l  conjugated to f0. We suppose that  the derivative DflIEO8 does not 

expand vectors. Finally, we suppose that  DfllEc~(pI.) exhibits complex 

eigenvalues. 

(ii) In the process, there always exist a strong-unstable cone field C ~ (cf. [13] 
for definitions) and a center-stable cone field C c8, defined everywhere, such 

that  C e8 contains the stable direction of the initial map fo. 

(iii) Moreover, the width of the cone fields C ~ and C Cs are bounded by a small 

constant (~ > 0. 

(iv) There exist a constant (~ > 1 and a neighbourhood V1 C Vo A W ~ (p), such 

that  de = ildetDf211Ecsll > a outside 1/1. 

(v) The map f71 is 5 - C O close to f o  1 outside V0 so that  II(ofi~lEc~)-lLI < 
Ao < 1/3 outside Vo. 

Note that  the properties 

for fv ,0  < L, _< 2, are also 

diffeomorphisms {f~,, 0 < 

stated in conditions (i) through (v), which are valid 

valid tbr a whole Cl-neighbourhood 14 of the set of 

< 2}. In particular, by [7] conditions (i) through (iii) 

imply that  any f C /4 has an invariant central foliation, since the central cone 

field enables us to define a graph transform associated to it, with domain in the 

space of foliations tangent to Ccs, which is not empty, since the stable foliation 

of f0 is tangent to it. On the other hand, all f c /4 also exhibit an unstable 

foliation varying continuously with the diffeomorphism. 

As a consequence of lemma 6.1 of [2] there is a Cl-neighbourhood/41 C / 4  of 
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the set {fv, 1 < ~ _< 2} such that for all f E //1, A = T 3 \ W~'(pf) is a partially 

hyperbolic attractor, which is not hyperbolic, because it is transitive and contains 

a (normally hyperbolic) invariant circle. A transitive set containing an invariant 

circle cannot be hyperbolic, since it has points with different indexes. 

Now take f in some small ball B = B(f l ,  5~), 5 r < 5/2. Suppose also that 

5 ~ is sufficiently small such that every diffeomorphism in the ball B(fo, 5 I) is an 

Anosov conjugated to f0 and every diffeomorphism in B( f l ,  5 ~) C / / i s  partially 

hyperbolic. We have: 

PROPOSITION 1.1: If  h' > 0 is small, B( f l ,  5 I) is an open set of diffeomorphisms 
o fT  3 satisfying conditions (1)-(5). 

Proof." Suppose that f l  is a (non-hyperbolic) diffeomorphism like above. Since 

B(f l ,  5') c / / ,  all that  is left to verify is that f E B( f l ,  5') satisfies (4) (5), if 5 / 

is sufficiently small. 

Now, given f E B(f l ,  5') let us prove that there is an Anosov g, conjugated 

and close to f0 such that f -- g in T 3 \ V0. Let us consider the lifts of f ,  f0, g 

to the covering space R 3 of T 3. We denote the lifts by the same letters of their 

corresponding maps in the torus. Then, we can write 

f = f l  + h, where [[h[[ < 5'. 

If we define g = fo + h, by our choice of 5 I, g is an Anosov. Moreover, since 

f l  = fo in T 3 \ Vo, we have g = fo + h = f in T 3 \ Wo. Since the Markov 

partition changes continuously with the point, as long as we have taken 5 ~ small, 

g has a Markov partition such that T 3 \ Vo does not intersect the boundary of 

any rectangle of it. So, the Markov partition of g is a Markov partition for f .  

Furthermore, there exists a rectangle Rg corresponding to the Rp (of fo) in which 

f = g. This means that f has at least one good rectangle. Finally, taking 51 

small, we guarantee that the eventual expansion in the central direction is not so 

big. So, f satisfies (1)-(5). II 

Note that the ball B(f l ,  5') is not an open subset of non-hyperbolic diffeomor- 

phisms. However, we also obtain: 

C O R O L L A R Y  1.2: There exists an open set of non-hyperbolic diffeomorphisms 
f: T 3 ~ T 3 satisfying (1) through (5). 

Proof'. Just take the open set of diffeomorphisms/t2 = / t l  N B(f l ,  51), ~' as in 

the proposition above. Conditions (1)-(5) fit for every diffeomorphism in a ball 

B(fx,5 ' ) .  
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A transitive at tractor containing a circle cannot be hyperbolic, since it must 

contain points of different stable indexes. So, b/1 is an open set of non-hyperbolic 

diffeomorphisms satisfying (1)-(5). | 

(3) This procedure generalizes to general non-trivial hyperbolic attractors (in 

the place of Anosov diffeomorphisms), e.g., Smale's solenoid; see [12, chapter 4]. 

Let 7"4 = {R0, . . . ,  RN} be a Markov partition for f0 restricted to the hyperbolic 

at tractor A0. By modifying ]0 near one of the rectangles R0 so as to turn 

the contracting (stable) direction possibly slightly expanding, while keeping f0 

unchanged in A0 \ R0, we can obtain a partially hyperbolic attractor satisfying 

conditions (1) through (5). 

(4) Recently, Bonatti-Viana [2] extended the results of [4] to general partially 

hyperbolic attractors with mostly contracting central direction: there always 

exist SRB measures supported in the attractor, and they are finitely many. The 

last section of their paper also contains several robust examples, not necessarily 

close to hyperbolic systems, to which our Theorems A and B apply. 

1.3 STRUCTURE OF THE PROOF. Let us talk about the ideas in the proof of 

our results. 

To deal with the non-hyperbolic behaviour of our maps (the fact that the bun- 

dle E c8 may fail to be contracting), we begin by constructing a new dynamical 

system F induced from the original f .  That  is, F is given locally by an (vari- 

able) iterate of f .  This is now a standard tool in ergodie theory. However, our 

method is novel in that inducing (in fact, a tower construction) is carried out 

backwards. This is related to the fact that it is along the center-stable direction 

that hyperbolicity breaks down. More precisely, given a point x E A, we analyse 

the negative orbit f - " ( x )  until finding some n(x) > 1 so that fJ is (uniformly) 

hyperbolic at f-n(X)(x), for every 1 <_ j < n(x). Then we construct a tower 
space 

T = { ( f - ' ( x ) , - i ) :  0 < i < ,,(5)} 

and we lift f - 1  to a map G on T: proj oG = f - 1  o proj, where proj : 7- --~ A 

is the canonical projection p r o j ( x , - i )  = x. A key point is that G is uniformly 

hyperbolic with respect to some metric in the tower T. The strategy is to deduce 

properties of f from properties of G by means of the projection proj. 

However, proceeding from this, we are faced with a serious problem: since the 

map G is not injective, in general, f cannot be lifted to a map on the tower 

(although it lifts to a nmltivalued relation). In order to completely bypass this 

difficulty, we introduced a redundancy elimination algorithm. We construct 7- 
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as a union of local center-stable leaves (intersected with the attractor).  In brief 

terms, the algorithm picks exactly one (convenient) copy of each center-stable 

leaf in the tower, and removes all the others. The "trimmed" tower obtained 

after the algorithm is applied is isomorphic to a full measure subset of A, and f 

lifts to a map G -1 in it, which is an embedding. 

The negative iterates of the remaining center-stable leaves which are contained 

in the 0-th floor of the trimmed tower exhausts (using f - 1  iterates) A, up to a 

zero measure (for the conditional Lebesgue measure of any unstable leaf) subset 

of A. The advantage of this algorithm is that we decompose almost every orbit 

into minimal possible segments so that the left endpoint is a hyperbolic time (cf. 

Definition 2.4) for the right endpoint. Both endpoints are in the 0-th floor (that 

is, the subset of points (y, 0) E 7") of the tower. Moreover, the first return map 

(obtained using positive iterates of f )  of this floor has Markovian properties. 

Sometimes we identify sets in the tower with their isomorphic images (under 

proj) in A. The 0-th floor of the trimmed tower and its isomorphic image are 

both denoted by `4. 

Due to the way we construct our tower, this set ,4 is hyperbolic in a strong 

sense: there is ; < 1 such that, given any positive iterate i, and x C `4, we have 

I]Df~lE~8(x)[i < ~i. Once we reach this point, the main results of our work can 

be derived along fairly well-known lines, from the properties of set .4. 

In the third section of our paper, we study the return map F (or root map) 
of A, centering our attention on examples such that the Markov rectangles are 

extensible to the ambient (this is the case of examples (1), (2) and (3) above). 

In such cases, the SRB measure can be obtained as an exponentially fast limit of 

iterates of Lebesgue measure in the ambient space M restricted to the positive 

Lebesgue measure subset .4. 

For that purpose, we adapt techniques in [8], to construct a measure (#A) 

invariant for this return map. Indeed, #.4 is, up to a normalization factor, the 

SRB measure #o of f restricted to A. We construct the SRB measure/to for f ,  

just pushing #A forward to the whole A. 

In section 4, we show a more abstract way (independent from that in section 

3) to construct the SRB measure and prove that it is Kolmogorov. Finally, we 

deduce that (f,/ to) has exponential decay of correlations in the space of Hhlder 

continuous functions and satisfies the central limit theorem. 

Besides the results we prove here, we expect these methods of backward induc- 

ing and redundancy elimination algorithm to be useful in much more generality, 

especially to study systems whose prospective stable direction fails to be con- 
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tracting. 

2. C o n s t r u c t i o n  o f  t he  set  A 

2.1  SOME NOTATIONS AND DEFINITIONS. W e  begin by making precise what 

we mean by Markov partition of a diffeomorphism f on a partially hyperbolic 

at tractor A. The standing assumption is that f has a center-stable foliation 9 ~c8 

defined on a neighbourhood 34 of A, besides the strong-unstable foliation. 

Definition 2.1 (Proper rectangle): A p r o p e r  r e c t a n g l e  R of A is a closed subset 

of it such that: 

1. R is the closure of its interior (in the relative topology of A). 

2. Given x, y E R, there is exactly one point z = Ix, y] in R which is the 

intersection of the local center-stable manifold through x and the local 

unstable manifold through y. Moreover, the bracket map [., .] is continuous 

in R. 

Definition 2.2 (Markov partition): A collection T~ = {R0, R1 , . . . ,  RN}, N >_ 1 
of proper rectangles is a M a r k o v  p a r t i t i o n  for f if: 

N 1. I.J~= 0 R~ -- A and the interiors of the R~'s are two-by-two disjoint. 

2. If the intersection F N A of a local unstable manifold with the set A is 

contained in a rectangle R~, and f - l ( I ' )  • Rj r 0, for some j E {0 , . . . ,  N}, 

then f - l ( p )  C R~. A similar property is satisfied by any local central 

manifold 3  ̀ such that  3 ` h A  is contained in R~: if f (3 `OA)  nR~ r 0, 

j c { 0 , . . . , N } ,  then f(3`) C Rj. 
Above, by local unstable manifold and local center-stable manifold we just 

mean small neighbourhoods of the point inside the corresponding unstable and 

center-stable leaves. From now on, these expressions will have a slightly more 

precise meaning: unless we say otherwise, we will use local  u n s t a b l e  man i -  

fold or just u n s t a b l e  man i fo ld  to mean the intersection of the local unstable 

manifold of a point x E A with the rectangle of the Markov partition that con- 

tains A. A similar convention will apply to the expression local  c e n t e r - s t a b l e  

ma n i fo ld  (or local  c e n t r a l  mani fo ld) .  In other words, the expression local  

c e n t e r - s t a b l e  man i fo ld  will designate points in A with the same future (n >_ 0) 

itinerary with respect to the Markov partition 7~ of A. Analogously, we will use 

local unstable manifold for points with the same past (n < 0) itinerary with 

respect to 7~. 

Local central manifolds will be represented by the (lower case) greek letter 3 .̀ 

If f~(7) C 7', for some i E N, we say 3" is an a n c e s t o r  (for f - l )  of 3'- 
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Sometimes we are going to deal with functions which are constant in local 

central manifolds. If h is a such fimction we will denote by h(v) its value in V- 

For each rectangle Ri of the Markov parti t ion 7~, we will call 

~i = ~(R,) = sup (J]D/IEC~(x)}]). 
xER~ 

R(x) will be the rectangle of the parti t ion that  contains x, and if x C Ri, we set 
- -  

Given n E iN, we will call an n - c y l i n d e r  a set C of points such that  each if(C) 
is entirely contained in a rectangle, for i = 0 , . . . ,  n. When n is assumed, we drop 

it, and we just write c y l i n d e r  instead of n -cy l inde r .  

Fixed a rectangle R (and n E N); we will refer to the set of cylinders C such 

that  .f~(C) c R as the c y l i n d e r s  f in i sh ing  a t  R. 

We will use the term u n s t a b l e  l e a f  to mean any restriction of a local unstable 

manifold, or any countable union of local unstable manifolds. We will use the 

term c e n t r a l  l e a f  to mean any finite union of local central manifolds. 

As we have seen in the introduction of this work, we are going to construct a 

kind of tower structure from the original map f .  Let us say what we mean by 

t o w e r  in this work. 

Definition 2.3 (Tower space): A t o w e r  s p a c e  7- or simply a t o w e r  T is a 

countable disjoint union Ul(St , /)  of copies of sets Sl in A, where each Sl is a 

union of local central manifolds, and 1 is a non-positive integer. Fix a non- 

positive integer l'; the set (St,, l I) is called t h e / ' - t h  f loor  of 7". The 0- th  f loor  

is also called g r o u n d  floor.  

2.2 BACKWARD INDUCING. Now we can begin the construction of our tower. 

This will be done by means of b a c k w a r d  induc ing ,  as explained in the intro- 

duction. 

In the 0-th floor of the tower, we include a copy 

(7, 0) of each 7 E 2"~o~c . So, the 0-th floor is, in fact, a copy of A. In the se- 

quel, we will often identify 7 and (3', 0). We associate to each (7, 0) the constant 

function w0((7,0)) = 1. Now, suppose the /-th floor is constructed, and that  

we have associated to it a function wl((7, l)), constant in each central leaf in it. 

Given (%/),  denote 7i, i = 1 , . . . ,  r the local central manifolds that  participate in 

the pre-image of V by f ( that is, these are the local central leaves whose image 

under f is contained in 7)- Let ; > As be any constant less than one. For each 

7i we calculate the expression 

= 
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If Ei  is less than  or equal to 1, we do nothing; otherwise, we include a copy 

(%, l - 1) of 3'i in the (l - 1)-st floor. In other  words, the set Sl-1 (see tower def- 

inition, in the last subsection) is precisely the union of all local central manifolds 

% for which Ei > 1. For those % we define 

~g-~(7~,/- 1)=E. 

This procedure defines our tower space. 

In a natural  manner,  we lift S-1 to a tower map  G on the tower, tha t  is, G is 

such tha t  

p ro j (G(x ,  1)) = f - l ( p r o j ( x ,  l)) 

where proj(x,  l) = x. 

In fact, G is defined as 

G(x, 1) = { (s(f-l(x)'l-1 (x), 0),- 1), otherwise.ifwl(x'l)' ~ ( S - l ( x ) ) . ~ - 1  > 1, 

However, the inverse G -1 is not well defined as a function, because G is not 

injective. 

i i i . i 

Backward Inducing. 

In the next  definition, we adapt  to our context  a notion introduced in [1]: 

Det~nition 2.4 (Hyperbolic t ime):  Given z E A, - p  is a h y p e r b o l i c  t i m e  for z 

if there exists p C 1~ such tha t  S-P(z) = y and, for i = 1 , . . .  ,p, 

~--I  I - - I  

(1) g - i .  1-[ sup [iDflEC,[i = g-i .  H ~(ff(Y)) < 1 
j=0 xeR(fJ (y)) 5= 0 



40 A.A.  CASTRO Isr. J. Math. 

holds. This means D fi lEtS(y)  is_contracting for i = 1 , . . . , p  by a factor of 

contraction at least of ;i. 

We say - p  is the first  h y p e r b o l i c  t i m e  for z, if none of - p  + 1 , . . . ,  - 1  is 

hyperbolic time for z. 

Sometimes, by a slight abuse of language, we say y = f -P ( z )  is the first 

hyperbolic time for z to denote that - p  is the first  h y p e r b o l i c  t i m e  for z. 

Remark 2.5: Note that replacing y by any y' E 7(Y) does not affect the value 

of (1). Hence y' is (first) hyperbolic time for fP(y'),  if and only if y is (first) 

hyperbolic time for z = fP(y). 

Definition 2.6 (A sequence ofT):  We say that {(7 ~ 0), (7 -1, --l),..., (,~--k,-k), 
(7 -k-l, 0)} forms a s e q u e n c e  o f  (7, 0) = (7 ~ 0) if (7 - i ,  - i )  C G(7 -i+1, - i +  1), 

for i = 1 , . . . , k  and (7 - k - l , 0 )  C G(7 - k , - k ) .  

Definition 2.7 (The tree of 7): The t r e e  of 7, denoted by T(7), is the union of 

all sequences of 3'- In this case, we will call 7 ~- (7, 0) the r o o t  of the tree. Each 

element (7 k, k), k # 0 of the tree will be called a b r a n c h  of the tree. The last 

term of each sequence of ? will be called a f lower of the tree. Sometimes, we will 

refer to a (~, i) in T(7  ) as a l ea f  of T(7),  where ('~, i) can be a branch, a flower 

or the root. 

Remark 2.8: It is a trivial but important remark that if 7 ~, 7" belongs to the 

same rectangle of the Markov partition, then their trees are combinatorially iso- 

morphic (their trees have the same combinatorial feature). 

We are able to prove the following important result: 

PROPOSITION 2.9: The flowers of  the tree of (% 0) are the first hyperbolic time 

for (7, 0). That is, i f{(7 ~ 0), (7 -1, - 1 ) , . . . ,  (7 k, k), (@-1, 0)} is a sequence of  the 

tree of V, then the points of 7 k-1 are the first hyperbolic time for their respective 

images in f - k+l (Tk -1  ) C 7. 

Proof: Consider the sequence of 7 expressed above. By the construction of our 

tower, we know that 

- l - 1  

1-[ 1. 
j=O 

This means that the points of 7 Z are not hyperbolic times for their respective 

f - t - images  in 7, for k - 1 < l < 0. So, we conclude that going backwards up to 

l = k we do not have hyperbolic time. 
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Therefore, the only thing left to prove is that  we have hyperbolic time (which 

then will be the first) for l = k - 1. 

We know that  if k -  1 < r < -1 ,  

- k  - - r - 1  

1 >_ @+1. H ~(fj(,,/k-1)) = Kr. H ~(f3(~,k-1)). w~((~,r,r). 
) ~ 0  5=0 

Since w~((Tr,r)) > 1, and the product above is < 1, the factor 
~-r --r--1 " I]j=o ~(fJ (@-1)) has to be < 1. So, we have 

r H a(ff(Y)) < 1, Vy �9 ~/k-1, 1 < i < --k + 1. | 
j = o  

Our next step is proving that,  given any local unstable manifold F, supplied 

with its respective Lebesgue measure m , ,  the measure rn~ of (the projection of) 

the n-th floor of the tower, intersected with F, decreases exponentially fast with 

?2. 

For this purpose, we will need the following result of V. Pliss, which assures 

that  the hyperbolic times are quite common. See, e.g., [9] for a proof. 

LEMMA 2.10 (Pliss lemma): Given ,~ > 0, e > 0, H > 0, 3N0 = No(A,e,H), 
5 = 5()~,<,H) > 0 such that, ira1, . . .  ,aN1 are real numbers, N1 >_ No with 

N1 

Z a ~ - < N I " A  and l anl<-H, f o r n = l , . . . , N 1 ,  

then there are 1 <_ nl <_ . . .  <_ nt <_ N1 such that 

a ~ < ( n - n ~ ) ( A + e ) ,  V j = l , . . . , t l  and n j < n < N 1 .  
i-=n 3 -4-1 

Fbrthermore, tl satisfies t l /N1 > 5. 

Let us explain the way we will use the Pliss lemma. If we fix any ~' such 

that ,~8 < g' < g, then there exists No (depending on g, ~' and on bounds for 

IIDflEC~l]) such that for any point x satisfying 

I[DfN~ tECS(x)[I < (g,)N~, N1 > No 

we will have at least tl hyperbolic times between x and fNl(x),  tl  being a fixed 

fraction of Nt.  

We will also need the following lemma: 



42 A.A. CASTRO Isr. J. Math. 

LEMMA 2.11 (Bounded distortion in unstable directions): Given L1 > O, there 

exists [ i  > 0 such that, given any C 2 disk F with tangent bundle inside an 

unstable cone field and with small curvature, and given any n > 1 such that 

diam(fn(F))  < L1, we have 

1 < IdetDfn]T=r(X)] < K,  

K - ]detDf~]Gr(y)[  

for every x, y �9 F. 

Proof: Let us write J~(z) = I det Df~[Tzrl. Due to lemma 3.1 of [2], the positive 

iterates f~(F) have bounded curvature, which implies that Jf*(r) is d-Lipschitz 

continuous for some uniform constant e' > 0. On the other hand, f is uniformly 

expanding along any direction contained in the unstable cone field, so we have 

d (p ( x ) ,  f i (y))  < n- ,  n n- ,  A~ d ( f  (x ) , f " (y ) )<_A~ n l ,  i = 0 , . . . , n .  

Therefore, we obtain 

I '  Jl~ (x )  n - 1  
log ~ < ~ [ logJp(r ) ( f ' ( x ) )  - logJl ,(r)( f i (y))[  

~ - 0  

n - - 1  n - - 1  

<_ < 
i=0 i=O 

0:3 i Hence, just t ake /~  exp(c' �9 L1.  ~-~=o A~). II 

PROPOSITION 2.12: Given any local unstable manifold P, the intersection of the 

n-th floor S,~ of the tower with F has exponentially small m~ measure, as long 

as we fix 50 in condition (5) (see introduction) sufficiently close to zero. That is, 

as long as we fix constant 5o sufficiently close to zero, there are constants c > 0 

and 0 < u < 1 which do not depend on F, such that 

m ~ ( G  n r )  < c . u ~, V n EN .  

F In particular, we have ~-~=om=( N Sn) < +oc. 

Proof  Let us call u the borelian measure on A given by u(B) = mu(F n B), 

where B is any borelian set. 

Let C 1 , . . . , C v  be all the n-cyl inders .  Given r such that As < r < r we 

define a g o o d  cylinder as one which satisfies 

n--1 
(2) (r  H a ( f J ( C q ) ) < l ,  q � 9  

j=o 
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If  a cylinder is not good, we say it is bad .  

Notice that  there exists No E N such that  the ( - n ) - t h  floor of the tower is 

contained in the union of the bad cylinders, if n > No. This happens because of 

the Pliss lemma. If ~/is in a good cylinder, by the Pliss lemma, an a n c e s t o r  of 

it has already become a hyperbolic t ime (with ~) for p( ' ) , ) ,  therefore it returned 

to the zero level of the tower. 

Of course the sum ~ g ~  0 of the u-measure of the floors from the ground floor 

to the - N 0 - t h  floor (No E N fixed in the paragraph above) is finite. So, the only 

thing we have to do is to prove that  the u-measure of the union of bad n-cylinders 

is exponentially small with n, n > No. 

Let us consider C( t l , . . . ,  t~), 0 _< tl  < .. �9 < t~ < n the union of all n-cylinders 

C whose images f t~  i c {1 , . . . ,  r} are contained in bad rectangles. We have: 

CLAIM: The u-measure of C( t l , . . .  ,tr) is bounded by const .u~, for some 
0 < u 2 < l .  

Let us prove by recurrence the above claim. Since C ( Q , . . . , t ~ )  is contained 

in C(t l , . . . , t~_ l ) ,  all we have to do is to verify that  m(C(t l , . . . , t~))  <_ u2. 
m(C( t l , . . . , t r_ l ) ) ,  for some constant 0 < u2 < 1. Since the Markov partition 

7~ is topologically mixing (and the fact that,  if some positive iterate of f is 

exponentially mixing, so also is f )  there is no loss of generality in supposing that  

the first positive iterate of each rectangle in T~ crosses some good rectangle in TO. 

Then, any disk with bounded curvature and with its tangent bundle inside the 

unstable cone field, crossing some rectangle, will have at most a uniform fraction 

0 < uo < 1 of (the conditional volume of) its image crossing bad rectangles. 

On the other hand, C( t l , . . . ,  tr-1) consists in a union of tr - 1 cylinders. Let 

F1 be the intersection of F with one of these t~ - 1 cylinders, say C. We will 

show that  the fraction of F1 occupied by C( t l , . . . ,  t~) is uniformly less than 1. 

In fact, for F1 as above, we have ( m ,  is the conditional volume of disks whose 

tangent bundle is inside the unstable cone field) 

- ~ ( f ~ r  ( r l )  n f ~ ( C ( t l , . . . ,  t~))) _< uo. m ~ ( f " ( r l ) ) .  

By the bounded distortion lemma above, we obtain 

m (rl n c ( t , , .  . .  , t r ) )  <_ . 

Finally, integrating over all small subsets F1 of F, crossing t~ - 1 cylinders of 

C ( t l , . . . ,  t~- l )  we obtain 

u(C( t l , . . . , t r ) )<_u2 .u (C( t l , . . . , t r_ l ) ) ,  w i t h 0 < u 2 < l ,  
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which finishes the proof of the claim. 

Now, we are able to prove that  the p-measure of the union of the bad 

n-cylinders goes exponentially fast to 0 as n goes to infinity. 

We just group the n-cylinders into sets C ( t l , . . . ,  t~), tr _~ n, as above. The bad 

sets, which group the bad cylinders, consist of points that  visit the bad rectangles 

for a number of times greater than or equal to r > ao �9 n, where a0 is a fixed 

fraction of n such that  

( 3 )  ~'_< (1 +(fo) a~ .A~ -a~ < 1. 

Each of them has exponentially small Lebesgue measure (bounded by const .u~), 

and the number of them is bounded by 

(n) 
r > ~ o  . n  

By Stirling's formula, we know that  

( n ) _  n, n n 
- -  < ] - <'  

for some universal constant .4. Then, we have 

n n = ( n ) ~ (  n ~ n-r  [ (  r ) (  1 +  )-e-~] r 
(n r) n -r  r ~ \-n-~r- r / = 1 +  n -  r 

- �9 r n - r  

Since r > a0 �9 n, if we take a0 near 1, the term in brackets above can be made 

(uniformly) as close to 1 as we want. 

This implies that  the p-measure of the bad cylinders is bounded by 

(4) cons t .  E u~ < c o n s t . u  3 , 
r ~ o  . n  

for some u2 < ua < 1 as long as we take a0 close to 1. (The term c o a s t  does 

not represent necessarily the same positive constant in both  sides above.) | 

COROLLARY 2.13: Let  B -- {% there is an infinite number of  subscripts i such 

that  (% i) is in the tower}. Then for any (global) unstable leaf F, m,~(BNF) = 0. 

Proof: Indeed, this is a consequence of the Borel-Cantelli Lemma. Given any 
- - O O  

negative integer n, B C [Jj=n Sj ,  where (S~,j) is the j - th  floor of our tower. 

Given any local unstable leaf F1 C F, we have from the proof above that  such 
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a union has exponent ia l ly  small  u-measure  (here, u is the restr ict ion of m~ with 

F1). As long as we let n --+ - ~ c ,  we obta in  u(B)  = O. Since this is valid for any 

F1 C F, this implies tha t  m ~ ( B )  = O. | 

R e m a r k  2.14: We note tha t ,  i f a  local s table l e a f ' / i s  contained in B,  ' / '  D f : ( ' / )  

also is in B,  for j �9 N. So we have 

7)= U /.(R)= U S'(B). 
jE-N jqS 

Such a set 7) is f and an f - L i n v a r i a n t  set, which is the union of local central  

manifolds and still has zero (conditional) Lebesgue measure,  since f is a C L  

diffeomorphism. 

For the sequel of our arguments ,  we nmst  discard the set 7). Therefore,  we will 

consider the tower built  for A \ 7). 

The  trees constructed for such a set have an interesting proper ty:  

PROPOSITION 2.15: Let  "/' be a central manifold in A \ 7). If('~, i) �9 T( ' / ' ) ,  then 

there is no other copy ( ' / , j )  o f ' / i n  T( ' / ' ) ,  j r i. 

Proof: First ,  suppose bo th  i and j to be  non-zero numbers .  There ' s  no loss of 

generali ty if we suppose j < i. Then,  we will have a copy ( '/ ' ,  j - i) of ' / '  in T( ' / ' ) .  

In this case, we will have ( ' / ' ,  n .  (j - i)) in T( ' / ' ) ,  Vn �9 N. Then,  ~/' �9 7). 

Now suppose i = 0, j < 0. If  f ( ' / )  C "y', t h e n j  < - 1 ,  and again we have 

copy ( '/ ' ,  i), i < 0 of ' / ' ,  and '/~ �9 7). Otherwise,  f ( ' / )  C '/l, which implies 

( ' / l , /)  �9 T( ' / ' ) ,  with l < 0 and I r j - 1. Then  we have two different copies wi th  

non-zero subscripts  of '/l. And we are again in the first case t rea ted  above. | 

2.3 REDUNDANCY ELIMINATION ALGORITHM. As we have seen, f does not lift 

to a m a p  on the tower. In this subsection we describe an a lgor i thm tha t  permi t s  

us to discard all copies but  one of each manifold ('/, i) in the tower. In fact, 

the union of the remaining copies will be isomorphic to A \ 7), a full Lebesgue 

measure  subset  of A. We close this subsection by analysing the act ion of f on 

the reduced tower. 

First ,  we need some definitions. 

Definition 2.16 (Tree inclusion): We say the tree of 7 is c o n t a i n e d  in the tree 

of '/~ if there is a copy ( ' / , i ) , i  r 0 of 7 in the tree of 7 ~. In this case, we write 

T( ' / )  -~ T( ' / ' ) .  

This  terminology is justified by the following proposit ion:  
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Tree inclusion and redundance elimination algorithm. Each curved segment represents 
a local stable manifold in the tower, and we draw two trees, where the tree of gamma 
is contained in the tree of gamma'. Roots and flowers appear as thicker segments. 

P R O P O S I T I O N  2.17": I f  T('y) -K T('y'), then for every leaf (Zy, i) in T(7)  there will 

be a copy (;/, j )  in T(7 ' ) ,  with i > j (recall that i, j are non-positive). I f  i = j, 

then both are zero. 

Proof'. Suppose i ~ 0. Let  (~, i) C T(7)  be as in the s ta tement  of the proposition. 

If T(3') -~ T(3/) ,  there exists k r 0 such tha t  (7, k) E T(7 ' ) .  Then,  f - i ( .~)  C 3' 

implies tha t  f-(i+k)(;/) c 7'. Since f - ( i+k) (~)  c V t does not have hyperbolic 

t ime up to k, it cannot  have hyperbolic t ime up to k + i, because, if it had one, 

such a hyperbolic t ime would correspond to a hyperbolic t ime for f-*( '~) C (7, 0) 

before i, and f - * ( 7 )  does not reach its first hyperbolic t ime up to i. 

Therefore,  if we put  j = k + i, we will have (~, j )  E T(7 ' ) ,  by the rules of the 

tree construction.  In this case, we see that  i r j .  

If i = 0, we can apply our last analysis for (7 l, l) D f(@, 0), (7 l, l) C T(7) ,  

l < 0. (We can suppose l < 0, because, if I = 0, 71 = 7, and the result is trivial.) 

So, either (~, 0) belongs to T(7 ' )  (so j = i = 0) or ('~,l - 1) belongs to T(7 ' )  

(in this case, j = 1 - 1 ~ 0). | 

Now, we can explain our method  of redundancy elimination. Given a tree T(7  ) 

it can be contained in, at most,  a finite number  of other  trees. This is because 

we discard the invariant set 79, which contains leaves with an infinite number  of 

copies in the initial tower. So, every local central manifold in the tower has just  
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a finite number of copies. If T(7) was c o n t a i n e d  in an infinite number of other 

trees, 7 would have an infinite number of copies, so it would belong to l) and so 
would also do the manifolds whose copies lie in its tree. 

Then, given 7, 7 ~ such that T(7) -< T(7'), we just erase T(7) from the tower, 
except the flowers that are common to both trees. In other words, we stay 

only with T(7~). We will not lose any information by proceeding so, because, 

as we have seen in the last proposition, there is a copy of T(7 ) in T(7'), just 

with decreased subscript (recall that the subscripts are negative) in relation to 

the original T(7 ). Since T(7 ) is contained in just a finite number of trees, this 

process finishes in some steps. 

Of course, by our algorithm, we always keep at least a copy of each local central 

manifold 7 in the tower, as we just eliminate some copy if we keep at least another 

as back-up. 

In fact, there will be exactly one copy of each 7 c A \ :D, in the final of the 

process, as we show in the next proposition. 

Let us call m a x i m a l  the trees that were not eliminated by our process. The 

following result justifies this terminology: 

PROPOSITION 2.18: Let  T(7' ) be a maximal  tree. I f  (~, i) is in T(7'), it cannot 

have (a different) copy in any other max ima l  tree. 

Proof: Suppose it has a copy 

suppose i < 0. If j < i, (7, J -  
is not maximal. The same is 

b y 7  and 7'- If i - -  0, t h e n j  

f - J (~)  C 7' has not reached 

(@, j) c T(7 ), T(7) maximal too, and i # j .  First, 

i) would belong to T(7'), so T(7) -< T(7') ~ T(7) 
valid if j > i, j # 0, exchanging the roles played 
< 0 (in order to have (~,j) # (~,0)). Therefore, 

its first hyperbolic time until j .  So (q, 0) is first 

hyperbolic time for f-k(.~) C 7, k > j .  Hence, (7,J - k) C T(7'), and again we 
have T(7 ) -< T(7'), which contradicts T(v)'s maximality. | 

Finally, the following proposition assures that our maximal trees glue nicely: 

PROPOSITION 2.19: / f  (7,0) is a flower in a max ima l  tree T(7'), it is also the 

root o f  another max ima l  tree. 

Proof: Suppose the contrary. So, there will be a copy (% i), i # 0 of 7 in another 

tree, for instance, T(7" ). If f -~ (7) C 7' (J < 0), we must have j < i, otherwise 

T(7' ) -< T(7"), which cannot occur, since T(7') is maximal. 

Therefore, (7", J - i) belongs to T(7'), hence T(7") ~< T(7'). By our Proposi- 

tion 2.15, each leaf in T(7" ) has a subscript greater than or equal to the subscript 
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of its copy in T(3/) (recall that  the subscripts are nonpositive integers). This im- 

plies that  i > 0, which is a contradiction. | 

Let S ~- A \ D be the set of tower surviving leaves (that rested after we apply 

our elimination algorithm) and let .A be the set 

A := {(; ,  0) �9 s} .  

We will keep the identification V - (7, 0). 

Now, we can lift f to ,S (we will use the same symbol f for the lift): 

f:S+ -~ 
{ (:(x),t + 1), if 1 < 0, 

f(x,1) = ( f (x ) , j )  otherwise, 

where j is the only one such that  ( f(x) ,  j) C S. 
Except for the fact that  we have discarded :D, we are back to a diffeomorphism 

on A. (Indeed, in the next sections we will always write A, instead of S.) However, 

the t r immed tower structure permits us to decompose almost every orbit into 

minimal segments, whose endpoints are the return times to the 0-th floor .A. 

We are led to consider the r o o t  m a p  induced by f ,  defining F:  .A +-~ as the 

first return map of Jr. This is the same map that  takes flowers in $ in their 

corresponding roots ( roo t  m a p ) .  

The map F is a bijection (onto its image) since it is a first return map of an 

invertible map. Since the flowers correspond to the first hyperbolic t ime for their 

respective roots, if we take any x �9 7, 7 C ~4, then we have IIDf'~lECS(x)ll < ~n, 
for all n > 0. This implies not only the fact that  F restricted to any local stable 

leaf is a (uniform) contraction, but also that  F has good hyperbolic properties 

(e.g., bounded distortion statements),  as we will show in the next section. 

Another important  property of F is that  we can decompose A into sets 

.A1,. . . , .A~,. . . ,  where each .Aj is a union of local central manifolds, such that  

F[.% = fs l.a,. 

By our construction, each image F( .4j)  crosses A in a Markovian way. This 

means that,  if F(Aj )  intersects the interior of a local unstable leaf, it contains 

the intersection of such a local leaf with A. 

Remark 2.20: Note that  any x E A (remaining from the elimination algorithm) 

corresponds to one unique point ( x , - i ) , i  > 0 in the tower. So f~(x) belongs 

to r This implies that  x has only negative Liapounov exponents in its central 
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space. By [2, Th. A] (see also [10], [11]), f has some SRB measure/ to .  In the 

last section, we prove that  it is Kolmogorov and the theorems we stated in the 

introduction of this paper. 

3. A n  invar iant  m e a s u r e  for t h e  r o o t  m a p  

In this section we center our attention on systems as in the introduction admitt ing 

a Markov parti t ion that  extends to the ambient. This means that  the Markov 

rectangles can be written as intersections of the a t t ractor  with open subsets of 

the ambient that  also satisfy a Markov property. More precisely, we suppose 

that  such open sets can be found admitt ing two transverse foliations: the center- 

stable foliation and an extension of the unstable foliation and these foliations 

map in a Markov fashion. In some cases, for instance, in systems derived from 

solenoid, we can use a not necessarily invariant foliation in place of an extension 

of the unstable foliation of the at tractor,  as long as such foliation satisfies three 

conditions that  are stated in (pl),  (p2) and (p3) below. 

Under such hypotheses, we construct an F-invariant measure #A, which we 

will use, as well as some of its properties we prove here, to construct (in the last 

subsection of this section) the SRB-measure for the original diffeomorphism f .  

We use the methods of C. Liverani [8], in the dissipative version given in [13, 

section 4]. For the reader's convenience, we rewrite some of the propositions in 

these works, instead of just pointing out the necessary modifications. 

Although we do not use it here, let us mention that  #A is, indeed, an SRB- 

measure for F.  Moreover, (F, P.a, .,4) has exponential decay of correlations and 

satisfies the central limit theorem. Proofs of these facts can be found in [5]. 

For proving these results, there is no loss of generality in supposing that  the 

extended Markov parti t ion exhausts A4. We also remark that  the tower con- 

struction that  we did in the last section for A can be easily adapted for points of 

AA. We just have to see the stable manifolds as submanifolds of M (as in their 

classical meaning), not intersected with A. 

3.1 TRANSFER OPERATOR. It  is no restriction to suppose that  the diameter of 

A4 is at most 1, and we do so in all that  follows. Let m be the Lebesgue measure 

on A4. In this section and in the next, we will consider m normalized in such 

way that  m(.A) -- 1. Clearly, it is also no restriction to suppose that  there is a 

unique good rectangle (just consider the other ones to be bad, replacing in the 

last section the value of the function g on each of them by its greatest value). 

We introduce linear operators 

(U(p)(x) = ~(F(x))  
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and 

(L~o)(y) = { 0~ ( F - l ( y ) ) l d e t  DF(F-I(Y))I-I' otherwise,if y e F(,4),  

where, if F(x) = fJ(x), we have DF(x) = D(ff)(x). Observe that,  changing 

variables y = F(x), 

f~t ~ I det~~ F-1 (L a m  = (y) )l  (y)dm(y) 
(A) 

We want to analyse the action of L on observable functions in terms of corre- 

sponding averages on local stable leaves. Of course, there is no canonical choice 

of probabilities supported on stable leaves. Instead, we average with respect 

to a whole class of measures, namely, the cone of Hhlder continuous densities 

7)(7 ) = 7)(a, #, 7), defined by 

7)(9') = {P: 7 --+ N such that p(x) > 0Vx E ~/and log p is (a, #)-Hhlder}, 

for each local stable leaf 7 C `4. It is easy to check that 7)(7) is a convex cone. 

Let 0 = 0 r denote the corresponding projective metric. We also need a similar 

cone 

7)1(7)  = 7 ) ( h i ,  ]-tl, 7 ) ,  

corresponding to better Hhlder constants at > 0 and 0 < it1 < 1: we shall take 

a > > a l  >> l a n d 0  < # < #1 < 1; cf. Lemma3.2 ,  (8), (13) below. Finally, we 

also consider the projective metric 0+ = 0+, r associated to the cone of positive 

densities 

7)+ (7) = {P: 7 --+ N such that p > 0}. 

Given ~o: .4 --+ N and p E 7)(7), we denote by f r  ~op the integral of ~o for the 

measure pmr, where m r is the smooth measure induced on 7 by the riemannian 

metric. We always suppose f r  p = 1, unless otherwise specified. Let ~: .4 ~ 1~ 

and L ~o be as defined above. Given any stable leaf 7, and j E N, let 7j,k, 
k = 1 , . . . ,  k r be the stable leaves such that ff(Tj,k) = F(Tj,k) C 7. Then, for 

any p C 7)(7), 

J~ ~ fF r p(y) (L ~o) p = I det OF (F-1 (Y))I 
, (%,~) 

~3,k~, "'det(DF[Tj'k)(x)' ~,k~, 
= 

,k ,k 
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where F I "Y3,k = f3 [ ")'j,k, (DF I ~h,k) denotes the restriction of D F  to the 

tangent space of ~'~,k and 

P3,k = I de t (DF I "Yj,k)l (p o F). 
I det DF[ 

In the next lemmas we use the fact that local stable leaves form a continuous 

family of C 2 embedded submanifolds of A, in particular, they have uniformly 

bounded curvature; see [13], Appendix A. 

LEMMA 3.1: There exists K > 0 which is a uniform Lipschitz constant for 

in %,k, Vj, k. 

log 
I det (DF L %,k)l 

I det DF) 

Proo~ Let 7j,k be the leaf containing f*('Y3,k). Then, we will simply write D f :  
instead of D f  [ "Yj,k, where f is our original diffeomorphism. 

Given x, y E 7j,k, we have 

log lde t (DF]Tj ,k (x)  l I det(DF[7~,k(Y)[ I 
I det OF(x)] - log ]det DF(y)I 

j--1 
< E log [det(DZ)(f*(x))[ - log ]det(Df*~(f*(Y))l . 
- ,=o I det Df( f i ( x ) ) l  I det Df(f i(Y))]  

Since the curvature of the stable leaves is bounded, Df~ is globally Lipschitz 
and the expression above is less than or equal to 

j - - I  j--1 

~f~K'd( f ' (x ) , f* (y) )  < g ' .  E ~ ' .  d(x,y) < g .  d(x,y).  | 
~ 0  z :O  

LEMMA 3.2: There are ,kl < 1 and T1 < 1 such that, i fa  is large enough, 
(a) p E :D(7) ~ Pj,k E :D(Ala, #,'~,k) for j > 0, 

O " ' " " < TlO(p',p") for j > O, (b) p', p" E/)f-y) ~ j,k~p3, k, P3,k) - 
where 0 and Oj,k are the projective metrics associated to 19(7 ) and to :D('y3,k), 

respectively. 

Proof'. Clearly, p > 0 ~ Pj,k > O. 
Let K > 0 be the Lipschitz constant we found in the last lemma. We suppose 

K 
a ~ - -  

1 - ~ '  
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where ~ < 1 is the same uniform bound for the contraction of F on stable leaves 
of the first section. Fix A1 �9 (~ ,  1) so that a > K/(A~ - ~ ) .  Then 

I log Pj,k (x) -- log pj,~ (Y)I --< I log p(F(x))  - log p(F(y))[ 

+ [ l o g ] d e t ( D F I T ~ , k ) ( x ) l  [det(DFlT~,k)(Y)[  
[ det n F ( x ) l  - log [ det DE(y)[  

< a d(F(x) ,  F(y))  t• + K d(x, y) < (a (~J)t* + K)  d(x, y)t* < a ~1 d(x, y)t,. 

This proves (a). 

Now, in view of proposition 2.3 of [13], to prove (b) it suffices to show that 
T)(Ala,#,7~,k) has finite diameter in :D('y3,k ). Let 0+,~,k = 0+,%,~ denote the 

projective metric associated to the cone l~+("/j,k) of positive densities on "/j,k. 
Observe that 0+,j,k and 03,k are given by the expressions 

and 

O+,j,k(~l, ~2) = log fl+,3,k = log sup(~2/~Vl) 
a+,3,k inf(~2/~l)  

�9 f ~ ( ~ ) ~ l ( y )  l = t o g s u p  - -  x , y  �9 Tj,k 
~Pl (X)~P2 (Y)  : 

05 k(~l, ~2) ---- log / ~ j , k ( ~ l ,  ~02) 

' aj ,k(~ ,  ~2)' 

where 

f ~2(X) exp(ad(x,  y) v )~p2(X 
aj,k(~Ol, ~ 2 ) =  inf ~ : y~, ~(x)'exp(ad(x,y)")~l(X) ~,(y) x'Y � 9  

and 13j,k is given by a similar expression with sup instead of inf. 

Given p', p" �9 I)(Ala, it, "/j,k) and x, y �9 ")'j,k, we have 

exp(a d(x, y)t,) _ p"(y) /p"(x)  >_ exp(a d(x, y)t~) _ exp(Ala d(x, y)t,) >_ T; 
exp(ad(x ,y )" )  - p ' (y) /p ' (x)  exp(ad(x,y)t~) - exp( -Alad(x ,y ) t* )  

where 7-~ = inf{(z - z)'~)/(z - z - M ) :  z > 1} �9 (0, 1). Therefore, 

a ' p") ' ' " ~,~(p, > ~1 ~+,j,k(p ,p ). 

[ f llx 7.1 ~ [ ^I pll). In just the same way, one finds 7~ > 1 such that j,k(P ,P ) <-- 2P+,j,k~P, 

Thus, 
I H t t! ! I Oj,k(p , p ) <_ O+,~,k(p , p ) + 1og(T2/T1) 

for every p', p" E T)(Ala, #, ")'j,k). 
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Next we find a uniform upper bound for O+,j(p', p") with p', p" �9 :D(%,k). We 

normalize f%,k p' = 1 = f%,k p'' and then the mean value theorem gives 

--> exp(a (diam'yj,k) it) - 
exp(-2a).  ~ (x) exp( -a  (diam3,j,k) u) > 

Recall that  we suppose diam(M) <_ 1. It follows that 

o~+,j,k(p',p") >_ exp(-2a) and ~+,j,k(P',P") <_ exp(2a) 

and so O+,j,k(p t, p") ~ 4a, for all p',p" �9 D('~j.k). Altogether, we have shown 

that  the 0j,k-diameter of ~)(/~la,/t ,  "~j,k) is bounded by 4a + 1og(T~/~-~). | 

Now let us consider a family of C 2 diffeomorphisms 

C2-close to the inclusion map of @ in M, chosen satisfying (pl), (p2) and (p3) 

below, which is always possible (see [13, section 3], and references therein), if we 

take it near to the (f-invariant) projection along unstable leaves. We observe 

that such C 2 projections are not necessarily f-  or F-invariant. 

As ~'j,k's are the connected components of F- l ( 'y)  (such that  Fl%.k = fJl%.k) 

we put ~3,k's to be the connected components of F - I (~ )  (numbered in such a 

way that  "Yj,k is close to "Y~,k and both components are in the same rectangle). 

We still write Irj,k = 7r(~j,k, "Y3,k). Let d(y', y") denote the distance between two 

points y', y" �9 .4 belonging to the same unstable leaf F, measured along F. Then 
there are constants a0 > 0, u0 > 0, *ku < 1, depending only on f ,  such that 
(pl) lr and log ldet DTr I are a0-Lipschitz maps; 

(p2) log I get DTr(y)l <_ aod(y ,r (y) )  ~'~ for every y �9 ~; 
(p3) d(x, ~r3,k(x)) < )% d(F(x) ,  7rF(x)) for every x �9 @j,k. 

For any % "~ as before, we define the d i s t ance  between ~/and "~ by 

d('7, ~) = sup{d(y, 7r(y)) : y �9 ~}. 

As a direct consequence of (p3), the map induced by F in the space of local stable 

leaves is expanding for this distance: 

(5) d(%@) > Auld('yj,k,~j,k), for every "y,~f. 

Next, to every p E :Dl('~) we associate the density iS: ~ --~ ]R defined by 

(6) iS(y) -- pQr(y)). [det D;r(y)[. 
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Clearly, t5 > 0. Moreover, as a consequence of (pl), log~ = logpolr+log ] det D~r I 
is (al, #l)-Hblder continuous with al = ala~ ~ + ao. Recall that diam(,~4) _< 1. 

This also implies that logt5 is (~,#)-Hblder continuous, for 5 = ala u~ + ao. We 
suppose 

(7) a /2  >>_ ~t = ala~ 1 + a0, 

so that, in particular, p ~ :D1(9') =~ t5 E 73(~). (This step is one of the reasons 

why we need the auxiliary cone 731(9'), the other one is in the proof of Lemma 

3.5.) Note also that f~ p = fq tb, by change of variables. 

3.2 AN INVARIANT CONE FOR THE T R A N S F E R  O P E R A T O R .  N o w  we introduce 

a cone of functions that, as we shall see, is strictly invariant under the transfer 

operator L. This fact is at the basis of our construction of #A. 

Given b > 0, c > 0, and u ~ (0,1], we let g(b,c,u) be the cone of bounded 

functions ~o: ~4 --+ R satisfying conditions (A), (B) and (C) below: 

(A) f.y ~op > 0 for every 9' e SCOot(A) and every p e 73(9'); 
(B) the map 7)(7 ) ~ p ~-+ log fw ~p is b-Lipschitz, that is, 

l o g ~  ~ p ' -  log ~ ~p" <bO(p ' , p" )  

for every p ' , p " E  73(9")with f . y p ' =  1 =  f.~p", and every 9" E .TtSoc; 
(C) the map .T~o c ~ 9" ~-~ f.y ~op is (c, p)-SSlder, more precisely, 

for every 0 e 731(9') and every pair 7, O' E ~o~(A). 
As a matter of fact, we want to think of the elements of g(b, c, u) as equivalence 

classes of bounded functions for the equivalence relation 

(P1 ~ ~ 2  ~=~ (/~119" : ~0219' my-almost everywhere, for every 0/~ 9V~oc. 

However, replacing an equivalence class by any of its members never results in 

ambiguity, and so we ignore this formal distinction, in order not to overload the 

notations. 
Let us also note that (B) is automatically satisfied (with b -- 1) in the particular 

case when ~o is nonnegative: 

(8) f.y~p' < supp' < s u p p ' / i n f p '  _ exp(O+(p' ,p"))  <_ exp(O(p' ,p")) .  
f~ ~p" inf p/i - inf p , t / sup  p" 
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In the sequel we take b and c large, and v close to zero; cf. Proposition 3.4 and 

(12). 

LEMMA 3.3: C(b, c, v) is a convex cone with -C(b, c, v) N C(b, c, v) = {0}. 

Proo~ See [13, section 4] for the proof, which follows through standard argu- 

ments. | 

Calculating the projective metric O = Ob,c,~ = log(fl/a) associated to 
C(b, c, v), we obtain: 

f  2p' f  2p' , ,  , ,  

, ~ 2 ) =  inf ]. f,~#lP' ' f , ) , - ~ ( P '  p ' ~1, ~P2), 

where the infimum runs over all p' c 7)(3'), P" E/) (7) ,  P C :DI('y), and every pair 

of local stable leaves "y and ~; fl(~l, ~2) is given by a similar expression, with inf 
replaced by sup. The explicit expressions of ~ and r/above are just (respectively) 

" exp(c d(% ~)v) _ (f9 qo2p/f'r qo2p) exp(bO(p', p")) - (f.y qa2p / f.y ~2P') and 
exp(bO(p',p")) - (f~p"/f~p') exp(cd(% ~) v) - ( f s~ l " f i / f~ lp ) "  

PROPOSITION 3.4 (Cone invariance): There exists A2 < 1 so that L(C(b, c, v)) C 

C(,k2b, A2c, v) for every large enough b and c. 

Proof." Let p C /:)(~/) and Pj,k be as defined above. Lemma 3.2(a) ensures 
that Pj,k c / ) (Tj ,k)  and so f'r~.k (PPj,k > 0 for each pair j, k. As a consequence, 

f~(L ~)p = ~ j , k  f ~Pj,k > 0, which proves the invariance of (A). 
To prove the invariance of condition (B), let p', p" C D(~,) with f~ p' = 1 = 

f~ p". Denote 

I de t (DF  1%,k)l p,, I ac t (DR ] Yj,k)l (p,, 
I det OF I (p' oF)  and 3,k = I det DF I F). o 

Moreover, let P3,k = P~,k/f%.~ P'j,k and P~,k = P~ ~ / f ~  P"~,k" Then, using condi- 
tion (B) for ~, followed by Lemma 3.2(5), 

: ( f lPj ,k  --~ P j , k  r  
, .~,I, j , k  3,k J,k 
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<_ Eexp(bO(P;,k, P j , k ) ) ~ p ,  ~oPj,k 
3,k "G,k 3, k 3,k 

<-- exp(bTlO(pt' P")) E ~,k  p' r 
3,k , j , k  3,k 

By the same arguments as in Lemma 3.2, 
ptt 
j,k (X) -- p"(F(x)__) < exp(O(p',p")) < exp(0+(p', p")). p ,k p ' ( F ( x ) )  - 

Thus, replacing above we conclude that 

<_ exp(bA20(p', p")) ~ ( L  ~o)p', 

as long as we fix ,~2 E (T1, 1) and suppose b _> 1/(,~2 - q ) .  
Now we prove invariance of condition (C). 
Given two stable leaves "), and "~, let p 6 D1(1') C D(~,). As we have seen before, 

f~(L ~P)p=- ~ f~,k ~opj,k and f~(L ~)t5 = ~ ,  f~,k ~~ 

where (tS)~,k: ~/j,k --+ R is defined by 

I det( O F  I ~j,k)(x)l 
(~)j,k(x) = p(TcF(x))l detDTr(F(x))l i detDF(x)[ 

Since P3,k E Dl(9'~,k), we may invoke property (C) for ~ together with (6), to 
conclude that 

1ogf~,,k ~P,,k--logfq,,k ~P~,k <--cd('yJ,k'~/,,k) v < eAuUd('y,~) v, 

where 

. . . . .  I det (DF [ ~/j,k)(~rj,k(X))l . . . . . . .  

with 7rj,k = ~r('~3,k, ~'j,k). Next, we use the following estimate, which is given by 
the auxiliary lemma 3.5 below: 

log J~f~.k ~~ - log .1%f.k ~o(~)j,k <_ Ko d(o', z,/)v, 
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for some constant K0 > 0 that  does not depend on c. Altogether, 

Ilogf~,k(PP,,k--logf%,k(P(/]),,k ~- (c ,~ + Ko) d(% Z'/) v, 

and so 

logf(L log]i(L )  < + < 

as long as we take ~2 �9 ( ~, 1) and suppose c > K0/()~2 - A~). | 

In what follows, we fix j, k so we drop k in our notations (e.g., we write 7j 

instead of ~/j,k), for the sake of simplicity. 

We have reduced the proof of the last proposition to proving the following 

auxiliary statement. We note that it is not necessary in the case we have an 

f-invariant ambient unstable foliation (for instance, in the case derived from 

Anosov systems). 

LEMMA 3.5: There is K0 > 0 depending only on f ,  a, al, b, such that 

I l o g f  ~ j - l o g f  ~p(~), < Kod("/,zy) v 

for every ~ �9 C(b,c,u) and every T, Z,/ �9 .T~oc, p �9 Z)l(~/), and j.  

Proof: We use K1 . . . .  , K6 to denote sufficiently large constants, depending only 

on f ,  a, al,  b. The previous arguments prove that 

(i) p �9 ~DI(~) ::~/) �9 ~D(al, ~1,,~) 

:=~ pt = (/~)j �9 .D(.~1~.1 '/~1, "~j) C "D(O,1,/-~1, '~j), 

(ii) p E ~)1(')') =~ Pj E :D()~lal, #l,q'j) C ~)(al, #l,')'j) 

where al = ala~ 1 +no. In (i), we suppose that al is large enough so that  Lemma 

3.2(a) holds with the cone :D(~I, #1,3') in the place of :D(-y) = :D(a, tt,')'). 

It follows from (i) and (ii) that both p' and p" belong to :D(~I, #, ~j) which, 

by (7), is contained in :D(a/2, #, ~j) C :D(~3). Hence, using condition (B) for the 

normalized densities p'/ f% p' and p"/ f% p", 

J% J% J% J#j 
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In order to bound the two terms on the right hand side, let us take a look at 
the relation 
(10) 

p'(x) _ p(~rfJ(x)) I detD~r(fJ(x)) I ]de t (Dff  I ~j)(x)] ]detDfJ(75(x))]  
p"(x) p(fJ~rj(x)) IdetDTrj(x)l ]det(DfJ173)(Trj(x))] Ide tDfJ (x ) l  

First, we need to examine d(zrfJ (x), fJ (Irj(x))). 
Let Fo be a leaf of the foliation we used to define ~rj, passing by x, and let 

~o c F0 be a curve joining x to Irj(x), with length((0) = d(x, Trj(x)). The key 
remark is that  the angle of each iterate ff(Fo), i > 0 with the direction of the 
foliation we just mentioned is bounded, in each point, by some constant H > 0, 
which depends only on f .  Then, 

d(zr(fJ (x) ), f f  (zrj(x) ) ) ~_ g . d(% ~) 

and we have 

d(fJ(x) ,  fJ(Trj(x))) = length(ff((o))  <_ (1 + H ) .  d(% ~). 

More generally, 

(11) length(f~(~o)) < (1 + H)AJ-~d(% ~), 
l < z ~ j  

a relation that  we will use to obtain bounded distortion for [] detDfJl]; that  is, 
due to the equation above, we have 

I[ log ] det D f f  (x)[ - log I get D f f  (~rj (x))[$[ < g2d(% ;y). 

This is because 
j - 1  

[] l~ I get DfJ(x)] - l~ I get DfJ(Trj(x))[ll <- E g l .  length(ff(~o)) 
~,=0 

3--1 oO 

_< KI-(1 + g ) .  E A ~ - ~ "  d(9',~) _< KI"  (1 + H ) .  E A ~ ' d ( % ~ )  < K2"4(%@) 
i=0 z=0 

where K1 is a bound for the Lipschitz constant of log ]l det Df] I. Combining with 
the assumption p C T~1(7), we find 

flog p( r fJ (x) )  - log p ( f 3 ~  (x)) I < a l t / " x ,  d(~, ~).1. 

On the other hand, by (p2), 

I log I det D r ( f  3 (x)) I - log [ det D r j  (x)[ I 

ao d(fJ (x), 7rfJ (x) ) ~~ + ao d(x, zrj(x) ) ~~ ~ 2a0d(3', ~)vo. 
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and 
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Next, using also the Hhlder property of the tangent bundle to bV~oc, in the same 
manner as above for log I det(Df3)l,  we have 

I log [ de t (Dff  I ~/j)(x)[ - log I det(Df3 I "/j)(Trj(x))ll < K3 d(',/, ;/),,o. 

At this point we assume that 

(12) 0 < # < # + u _< #~ _< uo. 

Then, replacing the previous bounds in (10), 

(13) [ logp'(x) - logp"(x)l <_ K4d('y,~) u' 

for some sufficiently large/s > 0, and every x C ~j and j. In particular, 

log~ p ' - l o g ~  p" <K4d(%~)  t~l 

(sup'b (P"/P') ~ 2K4 d('7, ~)"~. (15) O+,j(p',p") = log \ ~ ~  ) <_ 

Inequality (14) provides the kind of bound we want for the last term in (9). 

To bound the term bO3(p', p"), we combine (15) with the relation (recall, e.g., 
the proof of Lemma 3.2) 

(p', #') < 0+,j (p', p") + (16) 

where 

{ exp(a d(x, y)~) - p"(y)/p"(x) } 
~ = i n f  ~ ~ ) - - ~  :x ,  y 6 7 3  w i t h x # y  

and "?~ is given by a similar expression, with inf replaced by sup. All that is left 
to do is to bound [ log s and I log #~1. Let us denote 

B' = (p'(y)/p'(x))exp(-ad(x,y)t*) and B" = (p"(y)/p"(x))exp(-ad(x,y)U). 

Clearly, p' e D(a/2, #, ~/3) implies log B' < -(a/2)d(x, y)U < 0, and analogously 
for p" and B". In particular, 

]B' - B" I < I logB' - log B" I = ] logp'(y) - log p'(x) - log p"(y) + log p"(x)l. 
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On the one hand, (13) implies 

(17) IB' - B "  I < I logp'(y) - logp"(y)l + I logp'(x) - logp"(x)l 

< 2K4d("/, ~/)u. 

On the other hand, 

(18) [B' - B"l  _< J logp'(y) - logp'(x)] + I logp"(y) - logp"(x)l 

< 2[0 d(x, y)m, 

because p', p" E :D(~I, #1, ~3)" Since we are taking #1 _> # + u, it follows tha t  

IB' - B"l <_ K5 d(x, y)U d(% ~)v, 

as long as K5 _> max{2K4,251}. Indeed, this last inequality is a direct conse- 

quence of (17) if d(x, y) > d('y, ~/), and of (18) in the case when d(x, y) < d('y, ~'). 
Then, 

log - - < 1  - B "  [B' - B"[ < ghd(X'y)Ud(v'~/)" _< K6 d(3', ~) ' .  
1 - B '  - 1 - max{B' ,  B"} - 1 - exp( - (a /2 )d (x ,y )~ ' )  

Replacing in "~ and "~, we find 

log ~ _> - K 6  d('y, ~)~ and log ~ _</<6 d('y, ~)~, 

and so, in view of (15) and (16), 

Oj(p',p") < 2K4d(v,z,/) ul + 2K6 d(-'/,~') v. 

Finally, by (9) and (14), 

f r < (2b+ 1)K4d(')',Zy) ul + 2bK6d(v, Zy) v < Kod(v,z)') u log ~ ~p' - log J#~ _ 

for some K0 > 0, which concludes the proof of the lemma. 1 

3.3 CONTRACTION OF THE PROJECTIVE METRIC. In the proof of the next result 

we use the projective metric O+ associated to the cone of bounded functions 

satisfying f~ ~op > 0 for every "y and every p E D(9'). In the same way as we 

calculated O, one checks tha t  O+(~ol, ~o2) = log(/3+(~o1, ~o2)/a+(~1, ~02)), with 

a+(~x,  ~o2) = inf and /~+ (Vl, r = sup [ T------ 
P,'Y p,-,/ 

(taken over every p E D('y) and every stable leaf -y). 
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PROPOSITION 3.6 (finite diameter): For b > 0, c > 0, v �9 (0, 1], the O-diameter 

O2 -- sup{O(L ~1, L ~2) :  ~1, P2 �9 C(b, c, v)} of L(C(b, c, v)) is finite. 

Proof: As in the proof of Lemma 3.2, the argument has two parts. In the first 

step, we bound D2 in terms of the O+-diameter of L(C(b, c, v)). Let ~1, ~2 �9 

C(A2b, )~2c, v). 
Given pl, pll �9 D(7) and p �9 :D1(7), we have 

~(p', p", qal, ~2) >_ exp(bO(p', p")) - exp(bA20(p', p")) >_ r; 
exp(bO(p', pi,) ) _ exp(-bA20(p I, p,i) ) 

where ~-~ = inf{(z - z:~2)/(z - z -~2) : z  > 1} �9 (0, 1). In just the same way, 

~(pl  pit, ~1, ~72) ~ T~, ?~(pt, pit, (~1, (P2) �9 [TI, T2], ~/(p, p, ~1, ~2) �9 [T~, Tgt], 

where r~ = sup{(z - z-~'2)/(z - z -~2) : z > 1} �9 (1,+0~). As a direct conse- 

quence, a(qal, ~2) >_ w~ a+(qol, q02) and/~(q01, q02) <_ T~/3+(q01, qa2), and so 

<_ + 

for all ~ , ,  ~2 �9 C(;~2b, ~2c, v) D L(C(b, c, v)). 
Now we present the second and last step, where we show tha t  the O+-diameter 

of L(C(b, c, v)) is finite, tha t  is, there is a uniform upper bound for 

f.r,,(Lqo2)P" / f.r,(L~2)P I 
f, , ,(Lqo~)p" f , , (LqOl)p"  qo~,qo2�9 p ' � 9  p " � 9  ). 

(We continue writing j instead of j,  k and 1 instead of l, m so as not to overload 

the notations) 

In fact, we have 

L,,(r (f.;,  2p; . L; 
E3,1 (f~j, r " f3'; r " 

So all we have to do is to bound uniformly each positive part  

where the bars mean normalization of the densities. Recall also tha t  P'3 G 

D(Ala, #, ~/~) and py �9 ~D(Ala, #, ~/j'), by Lemma 3.2. Hence our claim tha t  the 

quotient in the equation above is uniformly bounded will follow if we show tha t  

(19) sup f'Y2 qo P2 - - < + o o  
f 'n ~ Pl 
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where the supremum is taken over every ~ E C(b, c, u), every Pl E D(Ala, #, 71) 
and P2 E D(Ala, #, 3'2) with f7l pl = f7~ P2 - 1, and every pair of local stable 

leaves 71, 72. 
Let 81 and 82 be the projective metrics associated to 7)(^/1) and 7)(')'2), 

respectively. First, we use condition (B) to get 

f r >exp(-bOl(pl,1)) j~1~)1 and ~2~p2 <exp(bO2(p2,1)) ~2~1 

where the same symbol 1 denotes two slightly different objects, namely, the 
constant function on "71 satisfying fT~ 1 = 1 and the constant function on 72 
with f72 1 = 1. Let D1 be some uniform upper bound for the 8-diameter of 

7)(Ala, #, "7) C 7)(3'), 7 E ~oc; cf. Lemma 3.2. Then 

exp(-D1) < exp(-b81(p1, 1)) < 1 < exp(b82(p2, 1)) < exp(D1). 

Finally, let 1 :72  --~ R be given by l(x) = l ( r (x))IdetD1r(x) l ,  where ~r = 
r(72,7~ ). By (pl), both 1 and i belong to 7)(a0, 1,72). On the other hand, 
recall (7), 

7)(no, 1,72) C 7)(ao, #, 72) C 7)(a/2, #, 72)- 

Let Do be a uniform upper bound for the 82-diameter of 7)(a/2, #, 72) C 7)(72). 
Then, using conditions (B) and (C) for the function ~, 

< < exp(b82(1, i))exp(c d(71, ~/2) ~) < exp(b Do + c). 
fT, ~1 - f~2 ~ i  fT, (pl - 

We conclude that 
fT: (p P2 - -  < exp(2b D1 + b Do + c) 
f'n ~ Pl 

for all the ~, Pl, ,02, 71, 0'2 under consideration, which completes the proof of 
(19). Altogether, we have shown that 

f../,, (~ V2)P" f~, (L ~l)p' Ej,l(f.. 0 ~P2~3 �9 ~ ;  ~lP/) 
< To 2, 

where 
T2 

To = ~11exp(2a + 2b D1 + b Do + c) 

for every ~ E C(b, c, u), leaves 7', 7" E ~ s  and normalized densities p' E 7)(7' ) loc, 
and p" E 7)(7"). Then the O+-diameter of L(C(b,c, u)) is bounded by logTo 2. 
| 
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In what follows we let T2 = (1--e -D2) < 1. Then, in view of our Proposition 3.6 

and proposition 2.3 of [13], the operator L is a T2-contraction for the projective 

metric 0 .  

3.4 AN INVARIANT MEASURE FOR THE ROOT MAP. We will now use the se- 

quence (~n = L n 1)n to construct the measure #.a we promised in the beginning 

of this section. Then, in the next subsection, we will spread this measure to all 

J~4, constructing the SRB-measure for f ,  that  we wilt name #0. 

It follows, from L being a contraction, that 

O+(~ok, ~t) _< O(~k, ~l) --+ 0 (exponentially fast) as k, 1 --+ oc. 

We shall use the statement of weak*-convergence given by the next proposition 

to construct the measure/zA. 

For the proof we need the important fact that the local stable foliation is 

absolutely continuous (see Appendix A of [13]): projections along the leaves of 

~'{oc are absolutely continuous maps with HSlder continuous jacobians. As a 

consequence, we have, for every m-integrable function r 

f A C d m =  f ( / ( r  ' 7)H~) dff~(7) , 

where H: A -+ (0, +oo) is such that log H is (a0, v0)-HSlder continuous, for some 

a0 > 0 and 0 < v0 ~ 1, and H~ = (H[7)mn defines a disintegration of m (ffz is 

just the quotient measure induced by the Lebesgue measure m in the space of 

local stable leaves). 

PROPOSITION 3.7: Given any O+-Cauchy sequence (~),~ in C(b, c, v), normal- 
ized by fA ~n dm = 1 for all n > 1, and given any continuous function ~ : A --4 R, 
the sequence ( f  ~ r din)~ is Cauchy in R. 

Proofi Consider first the case when ~ > 0 and logr  is (a/2,#)-HSlder. In 

particular, log r is (a/2, #)-HSlder along each local stable leaf 7 (with respect to 

the induced metric). We write 

where H.~ = H I 7 .  Note that (r is strictly positive and log(r is (a, #)- 

H61der, as long as we fix a > 2ao and # < to; cf. (7) and (12). Moreover, 
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and H7 > 0 with logH7 an (a, #)-HSlder function. Therefore, given k, l _> 1, 

f.r qOk H.~ 
f~r qOt--------~ > a+(qOk, and f'~ ~OkCH'r < fl+(qak, ~tCH.r _ for all 7. 

On the other hand, fat qOk dm = 1 = fat qol dm implies that f~ qakHq < fq qolHq 

for some local leaf "~. Thus, 

f../ ~~ /3+(~pk, qot) f~ qOkH.~ 
< - -  < e ~ for all 7, 

implying that 

As a consequence, 

fat qOk~ dm < eO+ (~ok,~oJ) 
fat qatr dm - 

for all k, I > 1. 

< sup Ir (e ~ - 1 ) ,  

and the proposition is proved in this case. 

Now, for an arbitrary #-HSlder continuous function r .A --+ •, we write 

r 1 6 2  + - r  where r 1 6 2  + r  B 

and B > 0 is chosen large enough to ensure that logr  is (a/2, #)-H51der 

continuous. The previous argument applies to CB ~ and so, by linearity, the 

proposition holds for r 

Finally, given any continuous function r and any e > 0, we may take r a 

#-H51der function such that sup Ir - r -< e. Then, for every k,l > 1, 

recall that we suppose fat ~on dm = 1 for all n. By the previous case, the right 

hand side is bounded by 3e if k and l are large enough, and so we have proved 

that  fA qa,~!l' dm is a Cauchy sequence also in this case. | 

We are now in a position to introduce the SRB-measure #at of the map F on A. 

For that we consider qon = L n 1, for each n _> 1. Then, by Proposition 3.7, (q0n)~ 

is a O-Cauchy sequence, and so it is also a e+-Cauchy sequence. Moreover, 

/ a t~ ,~dra=/x (L '~ l )  l d m = f  l ( U ' q ) d m = / x l d m = l ,  f o r a l l n _ > l .  



Vol. 130, 2 0 0 2  EXPONENTIAL DECAY OF CORRELATIONS 65 

Then we define #A to be the weak*-limit of (L ~ 1) m = (F~) ,  m: 

f Cd#A= l imf(L~l)r  = l imJA(r  o F'~) din, 

for each continuous r A --+ N. Clearly, ttA is invariant under the map F: for 

any r 

f (r F)d#~t = lim / (r F"+l)dm= lim f (r F'~)dm= / r 

The following lemma, in rough terms, asserts that  #.4 behaves as an absolutely 

continuous measure (with respect to Lebesgue measure) if one quotients out local 
stable leaves. Let $-0 be the a-algebra of Borel sets which are the union of local 

stable leaves: B E .7"o if and only if B is a Borel subset of AJ and, given any local 

stable leaf 7, either 7 n B = 0 or 7 C B. Clearly, ff~ is just the restriction of rn 

to Yo. 

LEMMA 3.8: There is K > 0 such that, for every r E Ll(3r0), 

1/. / /. Cdm ~_ Cd#A ~_ K ~dm. 

Proof." Let 7, 5 be local stable leaves and H~ -- HI7 and H 5 = HI5 be as 

in the proof of Proposition 3.7. In addition, let -Hv = (H~ o ~r) I det D~I, with 

Ir = ~r(5 , 7). Recall that log H is (ao, uo)-HSlder, with (ao, vo) depending only on 

f .  Therefore, up to choosing a, al larger than ao, and #, #1 smaller than uo, as 

in (7), (12), we have H~ E 7?1(~/) and H~, / ~  E 7?(a/2,#,~/). Then properties 

(B) and (C) give, for each ~k = L k 1, 

- <_ exp(b0+(H~, HS) + cd("/, x/)u) < exp(bDo + c) 

where Do is a uniform bound for the 0-diameter of Z)(a/2,#,~) c 7)(~); see 

Lemma 3.2. For simplicity, we write K = exp(c + bDo). Recalling that 

we conclude that f'r ~k H~ _< K for every local stable leaf 7. Then 

/A~(Lkl) dm=/~(7)(]i(Lkl)H~,)dCn(7) 

J J.4 
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note that  functions r E Ll(hr0) are constant on each stable leaf 7- Passing to 

the limit as k --+ ec, f r d#.4 _< K fA r dm. The dual inequality f r d#A > 
K-1  fA r dm may be derived in just the same way, and so the argument is com- 

plete. I 

Remark  3.9: A more efficient way to proceed in order not to suppose the ex- 

istence of just one good rectangle is the following: we can suppose that  in the 

first negative iteration, the (pre)image of each rectangle crosses all the rectangles. 

If this is not the case, one can replace f by fP for some suitable p > 0 in the 

tower construction. It  is a well known fact (cf. [14]) that  the exponential decay 

(and also central limit theorem) for fP (for some p > 0) implies the same result 

for f .  Hence, the trees of local stable manifolds in different rectangles will be 

comparable. That  is, there are constants 0 < nl < n2 such that,  given any 7, 

-)", the proportion of the number of local stable leaves in their preimages in the 

intersection of any floor of their trees with a fixed rectangle is between nl  and n2. 

So we can compare the integrals in the preimages of ~, and 7 '  in each rectangle, 

therefore we can compare f~ L ~p and f~, L qop'. 

3.5 AN INVARIANT MEASURE FOR THE ORIGINAL SYSTEM. In this subsection 

we construct an invariant measure for f ,  which will result in the SRB measure. 

Let A = [_J{A1,A2,...} be as in the end of section 2, that  is, FI.~ 3 = fJ].4~. 
Fixed a j ,  put r = fl(.Aj), for l = 0 , . . .  , j  - 1. Since F is a first return map, 

the sets J[3,l are disjoint, for all pairs j, I. Moreover, they exhaust (mod 0) Ad. 

So, let us define the following measure over A4: 

#~o(B) = #.4(f-Z(B)), VB E ~4j,~, B a Borel set. 

The measure of other Borel sets (not contained in one single Aa,l) is defined in 

the natural way. It  is obviously f-invariant,  because, if B is a Borel set in ,4a,l 

with l > 1, we have 

#'o(I-I(B)) = # A ( I - ' + l f - I ( B ) )  = #A( f - ' (B) )  = #Io(B), 

and if B is a Borel set E A we have 

#~o(f-l(B)) = # ~ ( F - I ( H ) )  = #A(B) = #~(B). 

Now, #to(f-l(B)) = #~(B) for general Borel sets by a-additivity. 

Now, we are led to the following lemma: 
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LEMMA 3.10: tt~ iS an f- invariant  finite measure. 

67 

Proo!~ All we have to do is to prove that  #~(A/I) < +oc.  However, 

c~ j - - 1  

#~)(.M) = # ~ ) ( E  E A),,) = E j .  #A(Aj).  
j = l  l = 0  3=1 

By Lemma 3.8 we know that  

,A(A3) < K .  ,~ (g j )  

and, by the second section of our paper, we know that  m(Aj)  "~ 0 exponentially 

fast as j -+ oc; then j �9 m(Aj)  ~ 0 exponentially fast as j -+ oc. 

Therefore, 

#~o(M) = E j "  #A(Aj) <_ K .  E j . m ( A j )  < oo. | 
j=l J=l 

Now, we can define #0 as the probability we obtain normalizing p~: 

! ! 
#o : =  

A priori, the fact #A is F-ergodic, alone, does not ensure that  #0 is f-ergodic. 

However, in the next section, we prove, not only in the context of this section, 

but for the general setting of the paper, tha t / to  is Kohnogorov and SRB measure 

for f .  

4. S t o c h a s t i c  p r o p e r t i e s  o f  t h e  o r ig ina l  s y s t e m  

4.1 EXISTENCE AND UNIQUENESS OF THE SRB MEASURE. In this section, /to 

refers both  to the measure we constructed in the last section or the SRB measure 

we obtain as a direct consequence of section 2 (see remark at the end of that  

section). 

We are able to prove: 

LEMMA 4.1: (f,  A, #o) is Kolmogorov. That is, if 13 is the a-algebra of Borel in 

A, there exists a a-subalgebra 13o C B such that: 

(1) f-l(t3o) c Bo. 
(2) Nn>o f-n(Bo)  = 1, where 1 is the a-algebra consisting in sets equal to A 

or O, modulo zero-measure sets. 
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(3) Vn>o{B �9  f - n (B)  C Bo} = 13(rood0). That is, the a-algebra spanned 
by the Borel sets which have some preimage (of some iterate o f f )  in 13o is, 
modulo zero-measure sets, equal to B. 

Proof'. During this proof, all constants written with the greek letter e are 

positive. 

Let us define Bo = Vn<o T4n, where T4o = 7r is the original Markov partition 

(intersected with the trimmed tower), and T4~ = f~(Ro),  n < 0. Therefore, Bo 

is (modulo zero-measure sets) the cr-algebra spanned by non-positive iterates of 

rectangles in partition 7"4o. Since such iterates are Borel sets of A, we obtain that 

Bo c B. 

(1) Given Bo C Bo, by lemma 5.2 of [9], Bo is approximated (in measure) 
k by a disjoint union of elements of the partition Vh=o TCh, k < 0, if [[kii is big 

k enough. So, there is no loss of generality in supposing that Bo E Vh=O h, 
for some k E -N.  By the Markovian property, the preimage f - l ( B o )  of Bo is 

k - 1  contained in a disjoint union of elements of Vh=o 7"th, and so it is in Bo. Therefore, 

f-~(13o) c (130). 
(2) Let us start by defining the global stable manifold of x E A. Since we 

know that local central manifolds in A (we are talking about the ones we have 

after we applied the elimination algorithm) are, in fact, local stable manifolds 

(in the sense that, if x, y belongs to such a manifold, d(fn(x), fn(y)) __+ 0 and 

the Liapounov exponents calculated along central directions are negative), we 

define the global stable manifold f~x of x C A as being the points y E A such that 

d(fn(x), f'~(y)) --+ 0 as n --+ oo. (Notice that we conventioned to call A the set 

we obtained after we applied our elimination algorithm.) 

Of course, each global stable manifold will be a union of local central mani- 

folds, and each local central manifold will be contained in just one global stable 

manifold. An obvious fact is that the image by f of a global stable manifold is 

another global stable manifold. 

So, let B be such that #o(B) > 0 and, for every n _ 0, there is Bn E 13o such 

that B = f -n(Bn) .  That  is, we have fn(B) ~ 130, for all n > 0. In this case, 

if x E B, then f~x C B. This is because, if some local central manifold 7 is in 

B N f~x and another, say 7 t, is in B c A f~x, then that will be an iterate m such 

that fm(7  ) and fro(7'  ) will be in the same local central leaf. However, such a 

leaf must be in fro(B) = Bin, since Bm E 13o. This is a contradiction with the 

fact that 7' C B c, therefore fro(7 '  ) C fm(B~) = (fm(B))C 

On the other hand, we are under the assumption that #o(B) > 0, and we 
k know that #o(B) -- #0(B~), Vn. Given e > 0, let us take Bo ~ Vh=0 Tih, for 
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some k < 0, such that  #0(B0 M B)/#o(Bo) > 1 - e .  So, for some hi,  there is some 

element B1 in parti t ion 7~nl, such that  B1 C B0 and #o(BABi ) / / t o (B i )  > 1 - c .  

Because the Markov parti t ion T~ is topologically mixing, there is n2 such that,  

for any R E T~, fn2 (R) crosses all rectangles in the Markov partition. Therefore, 

U1 = f,~l+n2 (B1) crosses all rectangles in T~. 

It  follows from the fact that  the SRB measure is absolutely continuous that  

m~(F1 A B)/mu(F1) > 1 - d, for all unstable leaf F1 in B1, d --+ 0, as e -+ 0. 

Calling U = f~1+~2 (B), using our distortion bounds in the unstable directions 

for leaves in U1 (see Lemma 2.11), we have that  

m~(fnl+n2(F1) A U)/m~(f~+~(r~)) > 1 - e ' ,  e" --+ 0 as e' --+ 0. 

Note that  for any n~ < 0, any unstable leaf F contained in some element of T ~  

will have the same bounds for an unstable volume of the images fn~+~2 (F) and 

distortion in unstable directions. So, we do not have to be worried about the fact 

that  B1 and nl depend on (. 

Since U also consists in global stable leaves, and the stable foliation is abso- 

lutely continuous (it coincides a.e. with Pesin's stable foliation), we have that  

#o(B) = #o(U) > 1 - e" ,  for some e"' -4 0 as e" -+ 0. This implies that  

/t0(B) = 1 and finishes this part  of the proof. 

(3) For this proof we use the following theorem (see [9], chapter 0, theorems 

5.4 and 5.5): 

THEOREM 4.2: Let (A,B,/t0) be a probability space where A is a separable 

metric space, and B is the Borel a-algebra of A. Let P~, n -- 0 ,1,2 . . . .  be a 

sequence of partitions such that 

lira ( sup diam(P))  = O. 
n-4+oo PCPn 

p Then, V~=0 ~ = B(mod0).  

We recall that  the 0-th floor A of the tower is divided into subsets Aj ,m, j  > 

0, m > 0, such that  FIA>,~ = f3].4~ and all points in Aj,,~ belong to the same 

j-cylinder. By construction, such subsets are elements of B0. So, we define the 

(infinite countable) parti t ion P of A given by P := {P3,m,t, 0 ~ l < j},  where 

Pj,m,l = ft  (A~,m). This implies that  given any set P E 7 ), there exists a negative 

p such that  fP(P) E 13o. Given any set P = P~,,~,t in 7 ) and a natural  n, f'~(P) 

has central stable diameter diam c~ (defined as the suprenmm of the diameters of 

the intersections of local center-stable leaves with P)  bounded by 

coast, diam c~ (,4) -~+n,  
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where the constant depends only on some uniform bound for the curvature of the 

local central leaves�9 

Now, just take Pn = Vin=_-n(fi(P)) �9 The contraction in unstable directions 

we have if we iterate backwards and the bound we just obtained above (for 

the center-stable direction) imply that l imn~+~(suppep  ~ diam(P))  = 0. By 

Theorem 4.2, Vn_>o :P~ = B(mod 0). Since the partitions we defined are contained 

in Vn>0{B E B ; f - n ( B )  C t30}, this finishes the proof of (3) and our lemma. 
| 

So far, we have proved that (f,  #0) is mixing, since every Kolmogorov system 

is mixing (and so, ergodic, too). We can now obtain the SRB property (m is the 

ambient Lebesgue measure): 

COROLLARY 4 . 3 : # 0  is the unique SRB measure o f f  in A4. The measure #o is 

ergodic and satisfies 

n--1 

n 
2=o 

for every continuous function ~: A4 --> ~ and m-almost all x E A4. In particular, 

#o is the unique SRB-measure for f in A4. 

Proof: Given any continuous ~a and any pair of points xl ,  x2 belonging to the 

same stable leaf, then it is easy to see that 

n--1 1 n--1 

1 Z ~ ( f f (x l ) )  converges ~=~ Z ~p(fJ(x2)) converges, 
n n 

j----O 3=0 

and in that case the two limits are the same. Let A be the set of points x E A4 
�9 t 1 n--1 such that hm~ - ~-]~j=o ~a(fJ(x)) does not exist, for some continuous ~a. Then A 

is a union of stable leaves and the ergodic theorem gives go(A) = 0. 

If re(A) > 0, projecting A along the center-stable manifolds (which are 

absolutely continuous), we would obtain that the Birkhoff limit above would 

not exist for some set S with positive m~ measure in some unstable leaf F C A. 

This implies that / t0(A) > 0, since #o is absolutely continuous. This contradicts 

the last paragraph�9 So we get m(A) = O. 
n--1 Now, given any continuous ~a, define ~(x) = l ima -1 ~j=o ~a(f~(x)). We have 

just shown that ~ is defined almost everywhere, with respect to both measures 

#o and m. Moreover, by the ergodic theorem, ~ is constant in stable leaves (in 

jr4) and ~5 o f = ~5 at #o-almost every point. The same argument of the last 
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paragraph applied to the set {x �9 .AA : r  = ~b(x)} gives that  ~3 o f = ~3 at 

nt-almost every point. Then the fact that  #0 is mixing implies 

f (r f (pd#o)r = f (~of~)r f ~dt~o f r -+o 

for every n > 0 and every continuous function r 

As ~ is constant in local center-stable leaves, because of the same argument 

we used in the paragraphs above we obtain that  the set {x �9 M : ~5 # f ~5#o} 

must have null Lebesgue measure. 

Therefore, 

f d o= f d o, 
m-almost  everywhere and #0-almost everywhere. This proves ergodicity, the 

SRB-property, and uniqueness, siniultaneously. | 

4.2 DECAY OF CORRELATIONS AND CENTRAL LIMIT THEOREM. At this point 

we can deduce decay of correlations and the central limit theorem from the prop- 

erties of ,4 that  we obtained above. For this, we can choose between at least two 

different ways. It  is not difficult, for instance, to adapt  the techniques in [13] of 

cones and projective metrics to obtain our theorems. However, since this paper 

may be quite long, we choose here to use the framework of [14] for this purpose. 

The following notions are borrowed from [14]: 

Definition 4.4 (Hyperbolic product structure): A set A' c M has h y p e r b o l i c  

p r o d u c t  s t r u c t u r e ,  if there exists a continuous family of unstable disks 5.u __ F 

and a continuous family of stable disks 5.8 = 7 such that  

(i) dim F + dim 7 = dim M; 

(ii) the F-disks are transversal to the "),-disks with the angles between them 

bounded away from O; 

(iii) each F-disk meets each 7-disk in exactly one point; and 

(iv) A' = (U F) n (U 7) 

Definition 4.5 (s-subsets and u-subsets): We say that  a subset S '  of a hyperbolic 

product structure set S is an s - s u b s e t  if it also has a hyperbolic product structure 

and its defining families can be chosen to be the same unstable family 9 T M  of S 

and a subset G 8 C 5 .8 of the stable family of S. We have an analogous definition 

for u - s u b s e t s .  

We have the following facts about .4: 
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(P1) Jl has hyperbolic product structure. Moreover, m r ( A n  F) > 0, where mr  

is the conditional Lebesgue measure over F. 

In fact, the local unstable and local center-stable leaves form two families of 

disks as in the definition above. As the local center stable foliation is absolutely 

continuous, and m(.A) > 0, we have rnr(A N F) > 0. 

(P2) There is a countable number of s-subsets of A (union of local stable leaves 

restricted to A), say A1, A2,. . . ,  such that 

- on each F-disk (contained in an unstable manifold), mr{~4 - U A~)} -- 0; 

- for each i, 3ri �9 N + such that f t ,  (Ai) is a u - subse t  of ~4; we require in fact 

that,  for all x �9 A~, fr'(~/(x)) C ~/(fr'(x)) and f~ (F (x ) )  D F(fr~(x)); 

- for each n, there are at most finitely many i with ri = n; 
- min{ri} > some r0 depending only on f .  

Note that if the lower bound r0 was one, we would just take the collection 

{A~} as a reenumeration of the collection {Aj A Cj,m, C3,m is a j-cylinder}. In 

this case, if Ai is contained in some ,43, we just put ri = j .  

Let us define the countable partition Q of A consisting in 

Q := {f1(~43), 0 < l < j}. 

Since a finite number of sets ~4j may present a return time j < r0, we divide 

such ones into subsets ~413,t consisting in points that stay together in the same 

component of the partition Q until they have a return to ,4 with return time t 

(by f )  greater than or equal to r0. Then, for such points we put ri -- t. So, it 

suffices to take the collection {Ai} to be a reenumeration of 

{.4 3 A C~j, k; j >_ ro, Cj,k is a j-cylinder}U 

{AI3,r~ A Cr,,k' ; j < r0, Cr,,k' is a rz-cylinder}. 

(P3) There is a partition P of U f'~(A) to which we can define the s e p a r a t i o n  

t i m e  between two points in .4, that is, the time their images stay together in the 

same rectangle of such partition. Such a separation time so(., .) has the following 

properties: 

(i) So(., .) _> 0 and dcpends only on 7-disks containing the two points; 

(ii) the number of "distinguishable" n-orbits starting from A is finite for each 

n; 

(iii) for x, y �9 A~, so(x,y) > r, +so( fr~(x) , f r ' (y) ) .  
In fact, just take P as the restriction of T~ to A. Then, so will just be the 

time that two points in ,4 stay together in the same rectangle of 7~ (or P),  and 

it is, by definition, non-negative. As points in the same 3' stay together forever, 
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so is constant in % This confirms property (i). If we fix n, the number of 

"distinguishable" n-orbits starting from .A is just the number of n-cylinders that 

intersect .4. Property (iii) is a trivial consequence of the definition of the A~. 

We saw that there exist C I > 0, 0 < ; < 1, 0 < Au < 1 such that  the following 

hold for all x, y E .A: 

(P4) We have contraction along "/-disks. For y E 7(x), d(f~(x),  fn(y)) <_ 
Cl~ '~, Vn > 0. 

This we have by construction of A[ and the tower. By Propositions 2.9 and 

2.19, we have IIDfn(z)iECS]l < ~n, for z E .4 and for all n > 0. Therefore, the 

center-stable manifolds of ~4 are in fact stable manifolds, with the contraction 

above. 

(P5) Backward contraction and distortion along F. For y E F(x) and 

0 < k < n < s0(x,y),  we have 
(a) d(f'~(x), f~(y)) <_ C .  )~o(~,y)-n; 

(b) 
n 

log l-- I detDfU(f i (x) )  )~SuO(X,y)-n" 
i=k detDfu(f~(Y))  <- C .  

(a) is due to the fact that x, y belong to the same s0(x, y)-cylinder, and the 

same unstable leaf. The proof of (b) is similar to the proof of Lemma 3.5 between 

equations (11) and (13). 

(P6) Convergence of D(f*IF ) and absolute continuity of the local center-stable 

foliation. 

(a) There exists 0 < a < 1 s.t. for y E 7(x), 

o o  

log 1-- [ detDf~(f~(x))  C 1 Vn > O. 
~= detDf~(f~(y))  <- .c~ '~, _ 

(b) For F, F' E 5 v ' ,  if ~: F M A --+ P' M A is defined by O(x) = "~(x) M F', then 

O is absolutely continuous and 

d (O* lmr ' )  f i  de tDfU(f i (x) )  
dmr (x) -- det Df~(f~(O(x)))" 

i = 0  

Again, the proof of (P6)(a) looks like the proof of Lemma 3.2. Taking x and 

y in the same 7, their distance is (uniformly) bounded by the supremum of the 

diameters of the center-stable leaves, which we will call de. As in Lemma 3.2, we 

have 
o o  

] det(Df~)( f ' (x))I  
log I ' I  < ~=~ I det(Df~(f~(Y))l - 
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o o  

E llogldet(DfU(f*(x)))l - log]det(DfU(ff(y))ll < (by (P4) above) 
$ ~ r t  

E K~ .d( f i (x) , f f (y))  <_ K ,  . E d~ .~' < K ~ , . d , . a  n, 
z ~ n  ~ n  

where Ku is a uniform bound for the Lipschitz constant of D f% 
(P6)(b), in our context, is a consequence of (P3)-(P6)(a). 

(PT) There exists C~ > 0 and 0o < 1 s.t. for some F �9 9 v'~, 

! n mr{x  �9 r n A :  r~(z) > n} < C~0o, n > 0. 

Property 

The proof of this fact is a corollary of the proof of Proposition 2.12. By that 

proposition, we know that the set of points of .A that stay a long time to have 

its first return (to A) is an exponentially small (conditional) Lebesgue measure 

set. Therefore, proceeding as in (P2), we have that the fact above is valid for the 

subset S1 of points x in .4 such that r,(x) > n is the first return time to .A. It 

is easy to see that the same property is valid for the subset 82 of points x such 

that ri(x) > n is the second return time and so on, until, at most, 8ro. Since 
the number of sets S_ we constructed is finite, we have that their union satisfies 

(P7), as we wanted to prove. 

Finally, we have 

(P8) #0 is the unique SRB measure of f (in A) and (fn, #0) is ergodic Vn > 1. 

This is valid because we proved that (f, Ito) is mixing, therefore (fn,/to) is 

mixing for all n, therefore ( f " ,  It0) is ergodic, for all n. (Indeed, ( fg ,  lZo) mixing, 

for some fixed N, is equivalent to (f,/to) mixing.) 
Having proved all these facts, our Theorem A can be easily obtained from the 

following result of L. S. Young: 

THEOREM 4.6 (Exponential decay of correlations [14]): Let f: M -+ M be a 
C 2 diffeomorphism on a compact manifold M, admitting a subset A C M with 

properties (P1)-(PS). Then (f, #o) has exponential decay of correlations in the 
space of v-Hflder continuous functions. That is, for u > O, if  we define 

7/~ := {~:  M ~ ]R/3Cs.t.l~(x ) - ~(y)] <_ C.  d(x,y) v, Vx, y �9 M}, 

then, for functions ~, r �9 7-l,, there exist K = K(~, r and T = T(U) > 0 such 
that 

I f !o(~pof'~)d#o- f ~d#o f tod#o <_K.T '~. 

Similarly, Theorem B follows from: 
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THEOREM 4.7 (Central  l imit  theorem [14]): Under the same hypotheses of the 

last theorem, every ~ C 7t~ with f ~d#o -- 0 satisfies the central limit theorem 

with respect to ( f ,#o) ,  with a ~ 0 if and only if ~ = r o f - r for some 

r c L2(#0). 
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